SEMIMARTINGALES AND SHRINKAGE OF FILTRATION

We consider a complete probability space (Ω, F, P), which is endowed with two filtrations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability space we consider a real valued G-semimartingale X. The purpose of this work is to study the following two problems: A....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of applied probability 2021-06, Vol.31 (3), p.1376-1402
Hauptverfasser: Bielecki, Tomasz R., Jakubowski, Jacek, Jeanblanc, Monique, Niewęgłowski, Mariusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1402
container_issue 3
container_start_page 1376
container_title The Annals of applied probability
container_volume 31
creator Bielecki, Tomasz R.
Jakubowski, Jacek
Jeanblanc, Monique
Niewęgłowski, Mariusz
description We consider a complete probability space (Ω, F, P), which is endowed with two filtrations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability space we consider a real valued G-semimartingale X. The purpose of this work is to study the following two problems: A. If X is F-adapted, compute the F-semimartingale characteristics of X in terms of the G-semimartingale characteristics of X. B. If X is a special G-semimartingale but not F-adapted, compute the F-semimartingale characteristics of the F-optional projection of X in terms of the G-canonical decomposition and the G-semimartingale characteristics of X. In this paper problem B is solved under the assumption that the filtration F is immersed in G. Beyond the obvious mathematical interest, our study is motivated by important practical applications in areas such as finance and insurance (cf. Structured Dependence Between Stochastic Processes (2020) Cambridge Univ. Press).
doi_str_mv 10.1214/20-AAP1621
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2546143833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27174895</jstor_id><sourcerecordid>27174895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-798420f7a1565b670560e6da6ef30440759a533a25054bed11c9e6b5f0f8b6053</originalsourceid><addsrcrecordid>eNo90MFLwzAYBfAgCs7pxbtQ8KZUvy_Jl7THsHVbsetkq-fQbik41M5kO_jfO-nw9C4_3oPH2C3CE3KUzxxiY15RcTxjA44qiRMt9DkbIBDEhEpesqsQtgCQylQP2OMqm-dzs6zycmqKbBWZchytZsu8fDHTLFpMokleVEtT5Yvyml209UdwN6ccsrdJVo1mcbGY5iNTxGuBeh_rNJEcWl0jKWqUBlLg1KZWrhUgJWhKaxKi5gQkG7dBXKdONdRCmzQKSAzZfd-78933wYW93XYH_3WctJykQikSIY7qoVdr34XgXWt3_v2z9j8Wwf6dYTnY0xlHfNfjbdh3_l9yjVomKYlffdlTxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546143833</pqid></control><display><type>article</type><title>SEMIMARTINGALES AND SHRINKAGE OF FILTRATION</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Bielecki, Tomasz R. ; Jakubowski, Jacek ; Jeanblanc, Monique ; Niewęgłowski, Mariusz</creator><creatorcontrib>Bielecki, Tomasz R. ; Jakubowski, Jacek ; Jeanblanc, Monique ; Niewęgłowski, Mariusz</creatorcontrib><description>We consider a complete probability space (Ω, F, P), which is endowed with two filtrations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability space we consider a real valued G-semimartingale X. The purpose of this work is to study the following two problems: A. If X is F-adapted, compute the F-semimartingale characteristics of X in terms of the G-semimartingale characteristics of X. B. If X is a special G-semimartingale but not F-adapted, compute the F-semimartingale characteristics of the F-optional projection of X in terms of the G-canonical decomposition and the G-semimartingale characteristics of X. In this paper problem B is solved under the assumption that the filtration F is immersed in G. Beyond the obvious mathematical interest, our study is motivated by important practical applications in areas such as finance and insurance (cf. Structured Dependence Between Stochastic Processes (2020) Cambridge Univ. Press).</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/20-AAP1621</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Diffraction ; Filtration ; Finance ; Insurance ; Probability ; Stochastic models ; Stochastic processes</subject><ispartof>The Annals of applied probability, 2021-06, Vol.31 (3), p.1376-1402</ispartof><rights>Institute of Mathematical Statistics, 2021</rights><rights>Copyright Institute of Mathematical Statistics Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-798420f7a1565b670560e6da6ef30440759a533a25054bed11c9e6b5f0f8b6053</citedby><cites>FETCH-LOGICAL-c317t-798420f7a1565b670560e6da6ef30440759a533a25054bed11c9e6b5f0f8b6053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bielecki, Tomasz R.</creatorcontrib><creatorcontrib>Jakubowski, Jacek</creatorcontrib><creatorcontrib>Jeanblanc, Monique</creatorcontrib><creatorcontrib>Niewęgłowski, Mariusz</creatorcontrib><title>SEMIMARTINGALES AND SHRINKAGE OF FILTRATION</title><title>The Annals of applied probability</title><description>We consider a complete probability space (Ω, F, P), which is endowed with two filtrations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability space we consider a real valued G-semimartingale X. The purpose of this work is to study the following two problems: A. If X is F-adapted, compute the F-semimartingale characteristics of X in terms of the G-semimartingale characteristics of X. B. If X is a special G-semimartingale but not F-adapted, compute the F-semimartingale characteristics of the F-optional projection of X in terms of the G-canonical decomposition and the G-semimartingale characteristics of X. In this paper problem B is solved under the assumption that the filtration F is immersed in G. Beyond the obvious mathematical interest, our study is motivated by important practical applications in areas such as finance and insurance (cf. Structured Dependence Between Stochastic Processes (2020) Cambridge Univ. Press).</description><subject>Diffraction</subject><subject>Filtration</subject><subject>Finance</subject><subject>Insurance</subject><subject>Probability</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo90MFLwzAYBfAgCs7pxbtQ8KZUvy_Jl7THsHVbsetkq-fQbik41M5kO_jfO-nw9C4_3oPH2C3CE3KUzxxiY15RcTxjA44qiRMt9DkbIBDEhEpesqsQtgCQylQP2OMqm-dzs6zycmqKbBWZchytZsu8fDHTLFpMokleVEtT5Yvyml209UdwN6ccsrdJVo1mcbGY5iNTxGuBeh_rNJEcWl0jKWqUBlLg1KZWrhUgJWhKaxKi5gQkG7dBXKdONdRCmzQKSAzZfd-78933wYW93XYH_3WctJykQikSIY7qoVdr34XgXWt3_v2z9j8Wwf6dYTnY0xlHfNfjbdh3_l9yjVomKYlffdlTxA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Bielecki, Tomasz R.</creator><creator>Jakubowski, Jacek</creator><creator>Jeanblanc, Monique</creator><creator>Niewęgłowski, Mariusz</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20210601</creationdate><title>SEMIMARTINGALES AND SHRINKAGE OF FILTRATION</title><author>Bielecki, Tomasz R. ; Jakubowski, Jacek ; Jeanblanc, Monique ; Niewęgłowski, Mariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-798420f7a1565b670560e6da6ef30440759a533a25054bed11c9e6b5f0f8b6053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Diffraction</topic><topic>Filtration</topic><topic>Finance</topic><topic>Insurance</topic><topic>Probability</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bielecki, Tomasz R.</creatorcontrib><creatorcontrib>Jakubowski, Jacek</creatorcontrib><creatorcontrib>Jeanblanc, Monique</creatorcontrib><creatorcontrib>Niewęgłowski, Mariusz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bielecki, Tomasz R.</au><au>Jakubowski, Jacek</au><au>Jeanblanc, Monique</au><au>Niewęgłowski, Mariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SEMIMARTINGALES AND SHRINKAGE OF FILTRATION</atitle><jtitle>The Annals of applied probability</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><spage>1376</spage><epage>1402</epage><pages>1376-1402</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We consider a complete probability space (Ω, F, P), which is endowed with two filtrations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability space we consider a real valued G-semimartingale X. The purpose of this work is to study the following two problems: A. If X is F-adapted, compute the F-semimartingale characteristics of X in terms of the G-semimartingale characteristics of X. B. If X is a special G-semimartingale but not F-adapted, compute the F-semimartingale characteristics of the F-optional projection of X in terms of the G-canonical decomposition and the G-semimartingale characteristics of X. In this paper problem B is solved under the assumption that the filtration F is immersed in G. Beyond the obvious mathematical interest, our study is motivated by important practical applications in areas such as finance and insurance (cf. Structured Dependence Between Stochastic Processes (2020) Cambridge Univ. Press).</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/20-AAP1621</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-5164
ispartof The Annals of applied probability, 2021-06, Vol.31 (3), p.1376-1402
issn 1050-5164
2168-8737
language eng
recordid cdi_proquest_journals_2546143833
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete
subjects Diffraction
Filtration
Finance
Insurance
Probability
Stochastic models
Stochastic processes
title SEMIMARTINGALES AND SHRINKAGE OF FILTRATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SEMIMARTINGALES%20AND%20SHRINKAGE%20OF%20FILTRATION&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Bielecki,%20Tomasz%20R.&rft.date=2021-06-01&rft.volume=31&rft.issue=3&rft.spage=1376&rft.epage=1402&rft.pages=1376-1402&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/20-AAP1621&rft_dat=%3Cjstor_proqu%3E27174895%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546143833&rft_id=info:pmid/&rft_jstor_id=27174895&rfr_iscdi=true