SEMIMARTINGALES AND SHRINKAGE OF FILTRATION
We consider a complete probability space (Ω, F, P), which is endowed with two filtrations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability space we consider a real valued G-semimartingale X. The purpose of this work is to study the following two problems: A....
Gespeichert in:
Veröffentlicht in: | The Annals of applied probability 2021-06, Vol.31 (3), p.1376-1402 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1402 |
---|---|
container_issue | 3 |
container_start_page | 1376 |
container_title | The Annals of applied probability |
container_volume | 31 |
creator | Bielecki, Tomasz R. Jakubowski, Jacek Jeanblanc, Monique Niewęgłowski, Mariusz |
description | We consider a complete probability space (Ω, F, P), which is endowed with two filtrations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability space we consider a real valued G-semimartingale X.
The purpose of this work is to study the following two problems: A. If X is F-adapted, compute the F-semimartingale characteristics of X in terms of the G-semimartingale characteristics of X.
B. If X is a special G-semimartingale but not F-adapted, compute the F-semimartingale characteristics of the F-optional projection of X in terms of the G-canonical decomposition and the G-semimartingale characteristics of X.
In this paper problem B is solved under the assumption that the filtration F is immersed in G. Beyond the obvious mathematical interest, our study is motivated by important practical applications in areas such as finance and insurance (cf. Structured Dependence Between Stochastic Processes (2020) Cambridge Univ. Press). |
doi_str_mv | 10.1214/20-AAP1621 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2546143833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27174895</jstor_id><sourcerecordid>27174895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-798420f7a1565b670560e6da6ef30440759a533a25054bed11c9e6b5f0f8b6053</originalsourceid><addsrcrecordid>eNo90MFLwzAYBfAgCs7pxbtQ8KZUvy_Jl7THsHVbsetkq-fQbik41M5kO_jfO-nw9C4_3oPH2C3CE3KUzxxiY15RcTxjA44qiRMt9DkbIBDEhEpesqsQtgCQylQP2OMqm-dzs6zycmqKbBWZchytZsu8fDHTLFpMokleVEtT5Yvyml209UdwN6ccsrdJVo1mcbGY5iNTxGuBeh_rNJEcWl0jKWqUBlLg1KZWrhUgJWhKaxKi5gQkG7dBXKdONdRCmzQKSAzZfd-78933wYW93XYH_3WctJykQikSIY7qoVdr34XgXWt3_v2z9j8Wwf6dYTnY0xlHfNfjbdh3_l9yjVomKYlffdlTxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546143833</pqid></control><display><type>article</type><title>SEMIMARTINGALES AND SHRINKAGE OF FILTRATION</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Bielecki, Tomasz R. ; Jakubowski, Jacek ; Jeanblanc, Monique ; Niewęgłowski, Mariusz</creator><creatorcontrib>Bielecki, Tomasz R. ; Jakubowski, Jacek ; Jeanblanc, Monique ; Niewęgłowski, Mariusz</creatorcontrib><description>We consider a complete probability space (Ω, F, P), which is endowed with two filtrations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability space we consider a real valued G-semimartingale X.
The purpose of this work is to study the following two problems: A. If X is F-adapted, compute the F-semimartingale characteristics of X in terms of the G-semimartingale characteristics of X.
B. If X is a special G-semimartingale but not F-adapted, compute the F-semimartingale characteristics of the F-optional projection of X in terms of the G-canonical decomposition and the G-semimartingale characteristics of X.
In this paper problem B is solved under the assumption that the filtration F is immersed in G. Beyond the obvious mathematical interest, our study is motivated by important practical applications in areas such as finance and insurance (cf. Structured Dependence Between Stochastic Processes (2020) Cambridge Univ. Press).</description><identifier>ISSN: 1050-5164</identifier><identifier>EISSN: 2168-8737</identifier><identifier>DOI: 10.1214/20-AAP1621</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Diffraction ; Filtration ; Finance ; Insurance ; Probability ; Stochastic models ; Stochastic processes</subject><ispartof>The Annals of applied probability, 2021-06, Vol.31 (3), p.1376-1402</ispartof><rights>Institute of Mathematical Statistics, 2021</rights><rights>Copyright Institute of Mathematical Statistics Jun 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-798420f7a1565b670560e6da6ef30440759a533a25054bed11c9e6b5f0f8b6053</citedby><cites>FETCH-LOGICAL-c317t-798420f7a1565b670560e6da6ef30440759a533a25054bed11c9e6b5f0f8b6053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Bielecki, Tomasz R.</creatorcontrib><creatorcontrib>Jakubowski, Jacek</creatorcontrib><creatorcontrib>Jeanblanc, Monique</creatorcontrib><creatorcontrib>Niewęgłowski, Mariusz</creatorcontrib><title>SEMIMARTINGALES AND SHRINKAGE OF FILTRATION</title><title>The Annals of applied probability</title><description>We consider a complete probability space (Ω, F, P), which is endowed with two filtrations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability space we consider a real valued G-semimartingale X.
The purpose of this work is to study the following two problems: A. If X is F-adapted, compute the F-semimartingale characteristics of X in terms of the G-semimartingale characteristics of X.
B. If X is a special G-semimartingale but not F-adapted, compute the F-semimartingale characteristics of the F-optional projection of X in terms of the G-canonical decomposition and the G-semimartingale characteristics of X.
In this paper problem B is solved under the assumption that the filtration F is immersed in G. Beyond the obvious mathematical interest, our study is motivated by important practical applications in areas such as finance and insurance (cf. Structured Dependence Between Stochastic Processes (2020) Cambridge Univ. Press).</description><subject>Diffraction</subject><subject>Filtration</subject><subject>Finance</subject><subject>Insurance</subject><subject>Probability</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><issn>1050-5164</issn><issn>2168-8737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo90MFLwzAYBfAgCs7pxbtQ8KZUvy_Jl7THsHVbsetkq-fQbik41M5kO_jfO-nw9C4_3oPH2C3CE3KUzxxiY15RcTxjA44qiRMt9DkbIBDEhEpesqsQtgCQylQP2OMqm-dzs6zycmqKbBWZchytZsu8fDHTLFpMokleVEtT5Yvyml209UdwN6ccsrdJVo1mcbGY5iNTxGuBeh_rNJEcWl0jKWqUBlLg1KZWrhUgJWhKaxKi5gQkG7dBXKdONdRCmzQKSAzZfd-78933wYW93XYH_3WctJykQikSIY7qoVdr34XgXWt3_v2z9j8Wwf6dYTnY0xlHfNfjbdh3_l9yjVomKYlffdlTxA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Bielecki, Tomasz R.</creator><creator>Jakubowski, Jacek</creator><creator>Jeanblanc, Monique</creator><creator>Niewęgłowski, Mariusz</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20210601</creationdate><title>SEMIMARTINGALES AND SHRINKAGE OF FILTRATION</title><author>Bielecki, Tomasz R. ; Jakubowski, Jacek ; Jeanblanc, Monique ; Niewęgłowski, Mariusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-798420f7a1565b670560e6da6ef30440759a533a25054bed11c9e6b5f0f8b6053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Diffraction</topic><topic>Filtration</topic><topic>Finance</topic><topic>Insurance</topic><topic>Probability</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bielecki, Tomasz R.</creatorcontrib><creatorcontrib>Jakubowski, Jacek</creatorcontrib><creatorcontrib>Jeanblanc, Monique</creatorcontrib><creatorcontrib>Niewęgłowski, Mariusz</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bielecki, Tomasz R.</au><au>Jakubowski, Jacek</au><au>Jeanblanc, Monique</au><au>Niewęgłowski, Mariusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SEMIMARTINGALES AND SHRINKAGE OF FILTRATION</atitle><jtitle>The Annals of applied probability</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><spage>1376</spage><epage>1402</epage><pages>1376-1402</pages><issn>1050-5164</issn><eissn>2168-8737</eissn><abstract>We consider a complete probability space (Ω, F, P), which is endowed with two filtrations, G and F, assumed to satisfy the usual conditions and such that F ⊂ G. On this probability space we consider a real valued G-semimartingale X.
The purpose of this work is to study the following two problems: A. If X is F-adapted, compute the F-semimartingale characteristics of X in terms of the G-semimartingale characteristics of X.
B. If X is a special G-semimartingale but not F-adapted, compute the F-semimartingale characteristics of the F-optional projection of X in terms of the G-canonical decomposition and the G-semimartingale characteristics of X.
In this paper problem B is solved under the assumption that the filtration F is immersed in G. Beyond the obvious mathematical interest, our study is motivated by important practical applications in areas such as finance and insurance (cf. Structured Dependence Between Stochastic Processes (2020) Cambridge Univ. Press).</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/20-AAP1621</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-5164 |
ispartof | The Annals of applied probability, 2021-06, Vol.31 (3), p.1376-1402 |
issn | 1050-5164 2168-8737 |
language | eng |
recordid | cdi_proquest_journals_2546143833 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete |
subjects | Diffraction Filtration Finance Insurance Probability Stochastic models Stochastic processes |
title | SEMIMARTINGALES AND SHRINKAGE OF FILTRATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SEMIMARTINGALES%20AND%20SHRINKAGE%20OF%20FILTRATION&rft.jtitle=The%20Annals%20of%20applied%20probability&rft.au=Bielecki,%20Tomasz%20R.&rft.date=2021-06-01&rft.volume=31&rft.issue=3&rft.spage=1376&rft.epage=1402&rft.pages=1376-1402&rft.issn=1050-5164&rft.eissn=2168-8737&rft_id=info:doi/10.1214/20-AAP1621&rft_dat=%3Cjstor_proqu%3E27174895%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546143833&rft_id=info:pmid/&rft_jstor_id=27174895&rfr_iscdi=true |