An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators
In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinear...
Gespeichert in:
Veröffentlicht in: | Journal of evolution equations 2021-06, Vol.21 (2), p.2749-2778 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2778 |
---|---|
container_issue | 2 |
container_start_page | 2749 |
container_title | Journal of evolution equations |
container_volume | 21 |
creator | Colli, Pierluigi Gilardi, Gianni Sprekels, Jürgen |
description | In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers
A
2
r
and
B
2
σ
(in the spectral sense) of general linear operators
A
and
B
, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space
L
2
(
Ω
)
, for some bounded and smooth domain
Ω
⊂
R
3
, and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter
σ
appearing in the operator
B
2
σ
decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of
B
appears. |
doi_str_mv | 10.1007/s00028-021-00706-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546077999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546077999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-1e1e1e5c40e14a5902fa14d2fce86b7f0b64ff0a49601be94ed20429abcc41cf3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA5-okTdvNcVnUFRa86MFTSNNkN0u3qUlE6sl38A19ErNW8SZzmBn4v2H4EDoncEkAqqsAAHSWASVZWqHMyAGaEEZZllOgh78z4fwYnYSwBSBVMSsm6GneYRmGXR9dtArLTrZDsAEb57HEa91pL1v7phu8kJvu8_1jadvWSt_gMISod_jVxg02XqpoXYKx6xMRnQ-n6MjINuiznz5FjzfXD4tltrq_vVvMV5nKCYsZ0fsqFANNmCw4UCMJa6hRelbWlYG6ZMaAZLwEUmvOdEOBUS5rpRhRJp-ii_Fu793ziw5RbN2LT68EQQtWQlVxzlOKjinlXQheG9F7u5N-EATEXqEYFYqkUHwrFCRB-QiFFO7W2v-d_of6AseBdjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546077999</pqid></control><display><type>article</type><title>An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Colli, Pierluigi ; Gilardi, Gianni ; Sprekels, Jürgen</creator><creatorcontrib>Colli, Pierluigi ; Gilardi, Gianni ; Sprekels, Jürgen</creatorcontrib><description>In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers
A
2
r
and
B
2
σ
(in the spectral sense) of general linear operators
A
and
B
, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space
L
2
(
Ω
)
, for some bounded and smooth domain
Ω
⊂
R
3
, and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter
σ
appearing in the operator
B
2
σ
decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of
B
appears.</description><identifier>ISSN: 1424-3199</identifier><identifier>EISSN: 1424-3202</identifier><identifier>DOI: 10.1007/s00028-021-00706-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Asymptotic properties ; Hilbert space ; Linear operators ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Regularity ; Research Article</subject><ispartof>Journal of evolution equations, 2021-06, Vol.21 (2), p.2749-2778</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-1e1e1e5c40e14a5902fa14d2fce86b7f0b64ff0a49601be94ed20429abcc41cf3</cites><orcidid>0000-0002-7921-5041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00028-021-00706-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00028-021-00706-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Colli, Pierluigi</creatorcontrib><creatorcontrib>Gilardi, Gianni</creatorcontrib><creatorcontrib>Sprekels, Jürgen</creatorcontrib><title>An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators</title><title>Journal of evolution equations</title><addtitle>J. Evol. Equ</addtitle><description>In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers
A
2
r
and
B
2
σ
(in the spectral sense) of general linear operators
A
and
B
, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space
L
2
(
Ω
)
, for some bounded and smooth domain
Ω
⊂
R
3
, and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter
σ
appearing in the operator
B
2
σ
decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of
B
appears.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Hilbert space</subject><subject>Linear operators</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Regularity</subject><subject>Research Article</subject><issn>1424-3199</issn><issn>1424-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKxDAQhoMouK6-gKeA5-okTdvNcVnUFRa86MFTSNNkN0u3qUlE6sl38A19ErNW8SZzmBn4v2H4EDoncEkAqqsAAHSWASVZWqHMyAGaEEZZllOgh78z4fwYnYSwBSBVMSsm6GneYRmGXR9dtArLTrZDsAEb57HEa91pL1v7phu8kJvu8_1jadvWSt_gMISod_jVxg02XqpoXYKx6xMRnQ-n6MjINuiznz5FjzfXD4tltrq_vVvMV5nKCYsZ0fsqFANNmCw4UCMJa6hRelbWlYG6ZMaAZLwEUmvOdEOBUS5rpRhRJp-ii_Fu793ziw5RbN2LT68EQQtWQlVxzlOKjinlXQheG9F7u5N-EATEXqEYFYqkUHwrFCRB-QiFFO7W2v-d_of6AseBdjg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Colli, Pierluigi</creator><creator>Gilardi, Gianni</creator><creator>Sprekels, Jürgen</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7921-5041</orcidid></search><sort><creationdate>20210601</creationdate><title>An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators</title><author>Colli, Pierluigi ; Gilardi, Gianni ; Sprekels, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-1e1e1e5c40e14a5902fa14d2fce86b7f0b64ff0a49601be94ed20429abcc41cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Hilbert space</topic><topic>Linear operators</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Regularity</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colli, Pierluigi</creatorcontrib><creatorcontrib>Gilardi, Gianni</creatorcontrib><creatorcontrib>Sprekels, Jürgen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of evolution equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colli, Pierluigi</au><au>Gilardi, Gianni</au><au>Sprekels, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators</atitle><jtitle>Journal of evolution equations</jtitle><stitle>J. Evol. Equ</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>2749</spage><epage>2778</epage><pages>2749-2778</pages><issn>1424-3199</issn><eissn>1424-3202</eissn><abstract>In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers
A
2
r
and
B
2
σ
(in the spectral sense) of general linear operators
A
and
B
, which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space
L
2
(
Ω
)
, for some bounded and smooth domain
Ω
⊂
R
3
, and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter
σ
appearing in the operator
B
2
σ
decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of
B
appears.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00028-021-00706-1</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-7921-5041</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-3199 |
ispartof | Journal of evolution equations, 2021-06, Vol.21 (2), p.2749-2778 |
issn | 1424-3199 1424-3202 |
language | eng |
recordid | cdi_proquest_journals_2546077999 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Asymptotic properties Hilbert space Linear operators Mathematical analysis Mathematics Mathematics and Statistics Operators (mathematics) Regularity Research Article |
title | An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20analysis%20for%20a%20generalized%20Cahn%E2%80%93Hilliard%20system%20with%20fractional%20operators&rft.jtitle=Journal%20of%20evolution%20equations&rft.au=Colli,%20Pierluigi&rft.date=2021-06-01&rft.volume=21&rft.issue=2&rft.spage=2749&rft.epage=2778&rft.pages=2749-2778&rft.issn=1424-3199&rft.eissn=1424-3202&rft_id=info:doi/10.1007/s00028-021-00706-1&rft_dat=%3Cproquest_cross%3E2546077999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546077999&rft_id=info:pmid/&rfr_iscdi=true |