An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators

In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolution equations 2021-06, Vol.21 (2), p.2749-2778
Hauptverfasser: Colli, Pierluigi, Gilardi, Gianni, Sprekels, Jürgen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2778
container_issue 2
container_start_page 2749
container_title Journal of evolution equations
container_volume 21
creator Colli, Pierluigi
Gilardi, Gianni
Sprekels, Jürgen
description In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers A 2 r and B 2 σ (in the spectral sense) of general linear operators A and  B , which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space L 2 ( Ω ) , for some bounded and smooth domain Ω ⊂ R 3 , and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter σ appearing in the operator B 2 σ decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of B appears.
doi_str_mv 10.1007/s00028-021-00706-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546077999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546077999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-1e1e1e5c40e14a5902fa14d2fce86b7f0b64ff0a49601be94ed20429abcc41cf3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA5-okTdvNcVnUFRa86MFTSNNkN0u3qUlE6sl38A19ErNW8SZzmBn4v2H4EDoncEkAqqsAAHSWASVZWqHMyAGaEEZZllOgh78z4fwYnYSwBSBVMSsm6GneYRmGXR9dtArLTrZDsAEb57HEa91pL1v7phu8kJvu8_1jadvWSt_gMISod_jVxg02XqpoXYKx6xMRnQ-n6MjINuiznz5FjzfXD4tltrq_vVvMV5nKCYsZ0fsqFANNmCw4UCMJa6hRelbWlYG6ZMaAZLwEUmvOdEOBUS5rpRhRJp-ii_Fu793ziw5RbN2LT68EQQtWQlVxzlOKjinlXQheG9F7u5N-EATEXqEYFYqkUHwrFCRB-QiFFO7W2v-d_of6AseBdjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546077999</pqid></control><display><type>article</type><title>An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Colli, Pierluigi ; Gilardi, Gianni ; Sprekels, Jürgen</creator><creatorcontrib>Colli, Pierluigi ; Gilardi, Gianni ; Sprekels, Jürgen</creatorcontrib><description>In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers A 2 r and B 2 σ (in the spectral sense) of general linear operators A and  B , which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space L 2 ( Ω ) , for some bounded and smooth domain Ω ⊂ R 3 , and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter σ appearing in the operator B 2 σ decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of B appears.</description><identifier>ISSN: 1424-3199</identifier><identifier>EISSN: 1424-3202</identifier><identifier>DOI: 10.1007/s00028-021-00706-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Asymptotic properties ; Hilbert space ; Linear operators ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Regularity ; Research Article</subject><ispartof>Journal of evolution equations, 2021-06, Vol.21 (2), p.2749-2778</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-1e1e1e5c40e14a5902fa14d2fce86b7f0b64ff0a49601be94ed20429abcc41cf3</cites><orcidid>0000-0002-7921-5041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00028-021-00706-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00028-021-00706-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Colli, Pierluigi</creatorcontrib><creatorcontrib>Gilardi, Gianni</creatorcontrib><creatorcontrib>Sprekels, Jürgen</creatorcontrib><title>An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators</title><title>Journal of evolution equations</title><addtitle>J. Evol. Equ</addtitle><description>In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers A 2 r and B 2 σ (in the spectral sense) of general linear operators A and  B , which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space L 2 ( Ω ) , for some bounded and smooth domain Ω ⊂ R 3 , and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter σ appearing in the operator B 2 σ decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of B appears.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Hilbert space</subject><subject>Linear operators</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Regularity</subject><subject>Research Article</subject><issn>1424-3199</issn><issn>1424-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFKxDAQhoMouK6-gKeA5-okTdvNcVnUFRa86MFTSNNkN0u3qUlE6sl38A19ErNW8SZzmBn4v2H4EDoncEkAqqsAAHSWASVZWqHMyAGaEEZZllOgh78z4fwYnYSwBSBVMSsm6GneYRmGXR9dtArLTrZDsAEb57HEa91pL1v7phu8kJvu8_1jadvWSt_gMISod_jVxg02XqpoXYKx6xMRnQ-n6MjINuiznz5FjzfXD4tltrq_vVvMV5nKCYsZ0fsqFANNmCw4UCMJa6hRelbWlYG6ZMaAZLwEUmvOdEOBUS5rpRhRJp-ii_Fu793ziw5RbN2LT68EQQtWQlVxzlOKjinlXQheG9F7u5N-EATEXqEYFYqkUHwrFCRB-QiFFO7W2v-d_of6AseBdjg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Colli, Pierluigi</creator><creator>Gilardi, Gianni</creator><creator>Sprekels, Jürgen</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7921-5041</orcidid></search><sort><creationdate>20210601</creationdate><title>An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators</title><author>Colli, Pierluigi ; Gilardi, Gianni ; Sprekels, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-1e1e1e5c40e14a5902fa14d2fce86b7f0b64ff0a49601be94ed20429abcc41cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Hilbert space</topic><topic>Linear operators</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Regularity</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colli, Pierluigi</creatorcontrib><creatorcontrib>Gilardi, Gianni</creatorcontrib><creatorcontrib>Sprekels, Jürgen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of evolution equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colli, Pierluigi</au><au>Gilardi, Gianni</au><au>Sprekels, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators</atitle><jtitle>Journal of evolution equations</jtitle><stitle>J. Evol. Equ</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>2749</spage><epage>2778</epage><pages>2749-2778</pages><issn>1424-3199</issn><eissn>1424-3202</eissn><abstract>In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlinearities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with indicator functions, were admitted. The operators appearing in the system equations are fractional powers A 2 r and B 2 σ (in the spectral sense) of general linear operators A and  B , which are densely defined, unbounded, selfadjoint, and monotone in the Hilbert space L 2 ( Ω ) , for some bounded and smooth domain Ω ⊂ R 3 , and have compact resolvents. Existence, uniqueness, and regularity results have been proved in the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution as the parameter σ appearing in the operator B 2 σ decreasingly tends to zero. We prove convergence to a phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional term containing the projection of the phase variable on the kernel of B appears.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00028-021-00706-1</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-7921-5041</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-3199
ispartof Journal of evolution equations, 2021-06, Vol.21 (2), p.2749-2778
issn 1424-3199
1424-3202
language eng
recordid cdi_proquest_journals_2546077999
source SpringerLink Journals - AutoHoldings
subjects Analysis
Asymptotic properties
Hilbert space
Linear operators
Mathematical analysis
Mathematics
Mathematics and Statistics
Operators (mathematics)
Regularity
Research Article
title An asymptotic analysis for a generalized Cahn–Hilliard system with fractional operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T08%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20asymptotic%20analysis%20for%20a%20generalized%20Cahn%E2%80%93Hilliard%20system%20with%20fractional%20operators&rft.jtitle=Journal%20of%20evolution%20equations&rft.au=Colli,%20Pierluigi&rft.date=2021-06-01&rft.volume=21&rft.issue=2&rft.spage=2749&rft.epage=2778&rft.pages=2749-2778&rft.issn=1424-3199&rft.eissn=1424-3202&rft_id=info:doi/10.1007/s00028-021-00706-1&rft_dat=%3Cproquest_cross%3E2546077999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546077999&rft_id=info:pmid/&rfr_iscdi=true