A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel

In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina ( Al 2 O 3 ) , copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2021-07, Vol.230 (5), p.1465-1474
Hauptverfasser: Kumar, P. Bharath, Suripeddi, Srinivas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1474
container_issue 5
container_start_page 1465
container_title The European physical journal. ST, Special topics
container_volume 230
creator Kumar, P. Bharath
Suripeddi, Srinivas
description In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina ( Al 2 O 3 ) , copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heating and velocity slip at the walls are taken into consideration. Numerical results are obtained by solving the transformed differential equations using the Runge–Kutta fourth-order in addition to the shooting method. Influences of several flow controlling parameters including Grashof number, cross-flow Reynolds number, Hartmann number and frequency parameter on velocity and temperature profiles are examined graphically. The results elucidates that the velocity-slip plays an important role in increasing the heat transfer and velocity of the nanofluid. Further, the heat transfer rate by means of Nusselt number against different parameters is studied and the numerical results obtained are presented. It shows that heat transfer rate at the injection wall increased with increasing Grashof number, frequency parameter and radiation parameter.
doi_str_mv 10.1140/epjs/s11734-021-00057-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546077936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546077936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6c1fba32d9c771de095b517439164a086df2725162aed5d824438712918735573</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhiMEEqVwBiyxDvX4ESfLqioPqRIsYG25idOkcu1gJ6DuuAM35CS4BMSS1YxG3z-j-ZLkEvA1AMMz3W3DLAAIylJMIMUYc5Hyo2QCBYc0YxiOf3vK-WlyFsI2Mhkp6CRp58i6XiNnUd9o1A0mqL41GtXGvSFXo2ZfebdTG6v7tkTLvW_t5vP949G9aWOQVdbVZmirmPZu2DRIoVftI6oM6lwcBVQ2ylptzpOTWpmgL37qNHm-WT4t7tLVw-39Yr5KS0pZn2Yl1GtFSVWUQkClccHXHASjBWRM4TyraiIIh4woXfEqJ4zRXAApIBfxPUGnydW4t_PuZdChl1s3eBtPSsJZhoUoaBYpMVKldyF4XcvOtzvl9xKwPHiVB69y9CqjV_ntVfKYzMdk6A4utP_b_1_0C3H5gAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546077936</pqid></control><display><type>article</type><title>A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel</title><source>SpringerLink (Online service)</source><creator>Kumar, P. Bharath ; Suripeddi, Srinivas</creator><creatorcontrib>Kumar, P. Bharath ; Suripeddi, Srinivas</creatorcontrib><description>In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina ( Al 2 O 3 ) , copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heating and velocity slip at the walls are taken into consideration. Numerical results are obtained by solving the transformed differential equations using the Runge–Kutta fourth-order in addition to the shooting method. Influences of several flow controlling parameters including Grashof number, cross-flow Reynolds number, Hartmann number and frequency parameter on velocity and temperature profiles are examined graphically. The results elucidates that the velocity-slip plays an important role in increasing the heat transfer and velocity of the nanofluid. Further, the heat transfer rate by means of Nusselt number against different parameters is studied and the numerical results obtained are presented. It shows that heat transfer rate at the injection wall increased with increasing Grashof number, frequency parameter and radiation parameter.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjs/s11734-021-00057-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum oxide ; Atomic ; Classical and Continuum Physics ; Computational fluid dynamics ; Condensed Matter Physics ; Copper ; Cross flow ; Differential equations ; Fluid flow ; Gold ; Grashof number ; Hartmann number ; Heat transfer ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Nanofluids ; Nanoparticles ; Optical and Plasma Physics ; Parameters ; Physics ; Physics and Astronomy ; Regular Article ; Reynolds number ; Runge-Kutta method ; Silver ; Slip ; Temperature profiles ; Transport Properties of Non-Newtonian Nanofluids and Applications ; Unsteady flow ; Velocity</subject><ispartof>The European physical journal. ST, Special topics, 2021-07, Vol.230 (5), p.1465-1474</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6c1fba32d9c771de095b517439164a086df2725162aed5d824438712918735573</citedby><cites>FETCH-LOGICAL-c334t-6c1fba32d9c771de095b517439164a086df2725162aed5d824438712918735573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjs/s11734-021-00057-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjs/s11734-021-00057-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, P. Bharath</creatorcontrib><creatorcontrib>Suripeddi, Srinivas</creatorcontrib><title>A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina ( Al 2 O 3 ) , copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heating and velocity slip at the walls are taken into consideration. Numerical results are obtained by solving the transformed differential equations using the Runge–Kutta fourth-order in addition to the shooting method. Influences of several flow controlling parameters including Grashof number, cross-flow Reynolds number, Hartmann number and frequency parameter on velocity and temperature profiles are examined graphically. The results elucidates that the velocity-slip plays an important role in increasing the heat transfer and velocity of the nanofluid. Further, the heat transfer rate by means of Nusselt number against different parameters is studied and the numerical results obtained are presented. It shows that heat transfer rate at the injection wall increased with increasing Grashof number, frequency parameter and radiation parameter.</description><subject>Aluminum oxide</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Cross flow</subject><subject>Differential equations</subject><subject>Fluid flow</subject><subject>Gold</subject><subject>Grashof number</subject><subject>Hartmann number</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Reynolds number</subject><subject>Runge-Kutta method</subject><subject>Silver</subject><subject>Slip</subject><subject>Temperature profiles</subject><subject>Transport Properties of Non-Newtonian Nanofluids and Applications</subject><subject>Unsteady flow</subject><subject>Velocity</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhiMEEqVwBiyxDvX4ESfLqioPqRIsYG25idOkcu1gJ6DuuAM35CS4BMSS1YxG3z-j-ZLkEvA1AMMz3W3DLAAIylJMIMUYc5Hyo2QCBYc0YxiOf3vK-WlyFsI2Mhkp6CRp58i6XiNnUd9o1A0mqL41GtXGvSFXo2ZfebdTG6v7tkTLvW_t5vP949G9aWOQVdbVZmirmPZu2DRIoVftI6oM6lwcBVQ2ylptzpOTWpmgL37qNHm-WT4t7tLVw-39Yr5KS0pZn2Yl1GtFSVWUQkClccHXHASjBWRM4TyraiIIh4woXfEqJ4zRXAApIBfxPUGnydW4t_PuZdChl1s3eBtPSsJZhoUoaBYpMVKldyF4XcvOtzvl9xKwPHiVB69y9CqjV_ntVfKYzMdk6A4utP_b_1_0C3H5gAQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kumar, P. Bharath</creator><creator>Suripeddi, Srinivas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel</title><author>Kumar, P. Bharath ; Suripeddi, Srinivas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6c1fba32d9c771de095b517439164a086df2725162aed5d824438712918735573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Cross flow</topic><topic>Differential equations</topic><topic>Fluid flow</topic><topic>Gold</topic><topic>Grashof number</topic><topic>Hartmann number</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Reynolds number</topic><topic>Runge-Kutta method</topic><topic>Silver</topic><topic>Slip</topic><topic>Temperature profiles</topic><topic>Transport Properties of Non-Newtonian Nanofluids and Applications</topic><topic>Unsteady flow</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, P. Bharath</creatorcontrib><creatorcontrib>Suripeddi, Srinivas</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, P. Bharath</au><au>Suripeddi, Srinivas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>230</volume><issue>5</issue><spage>1465</spage><epage>1474</epage><pages>1465-1474</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina ( Al 2 O 3 ) , copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heating and velocity slip at the walls are taken into consideration. Numerical results are obtained by solving the transformed differential equations using the Runge–Kutta fourth-order in addition to the shooting method. Influences of several flow controlling parameters including Grashof number, cross-flow Reynolds number, Hartmann number and frequency parameter on velocity and temperature profiles are examined graphically. The results elucidates that the velocity-slip plays an important role in increasing the heat transfer and velocity of the nanofluid. Further, the heat transfer rate by means of Nusselt number against different parameters is studied and the numerical results obtained are presented. It shows that heat transfer rate at the injection wall increased with increasing Grashof number, frequency parameter and radiation parameter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjs/s11734-021-00057-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2021-07, Vol.230 (5), p.1465-1474
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_journals_2546077936
source SpringerLink (Online service)
subjects Aluminum oxide
Atomic
Classical and Continuum Physics
Computational fluid dynamics
Condensed Matter Physics
Copper
Cross flow
Differential equations
Fluid flow
Gold
Grashof number
Hartmann number
Heat transfer
Materials Science
Measurement Science and Instrumentation
Molecular
Nanofluids
Nanoparticles
Optical and Plasma Physics
Parameters
Physics
Physics and Astronomy
Regular Article
Reynolds number
Runge-Kutta method
Silver
Slip
Temperature profiles
Transport Properties of Non-Newtonian Nanofluids and Applications
Unsteady flow
Velocity
title A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20the%20pulsatile%20flow%20of%20hydromagnetic%20Eyring%E2%80%93Powell%20nanofluid%20through%20a%20vertical%20porous%20channel&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Kumar,%20P.%20Bharath&rft.date=2021-07-01&rft.volume=230&rft.issue=5&rft.spage=1465&rft.epage=1474&rft.pages=1465-1474&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjs/s11734-021-00057-5&rft_dat=%3Cproquest_cross%3E2546077936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546077936&rft_id=info:pmid/&rfr_iscdi=true