A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel
In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina ( Al 2 O 3 ) , copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heatin...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2021-07, Vol.230 (5), p.1465-1474 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1474 |
---|---|
container_issue | 5 |
container_start_page | 1465 |
container_title | The European physical journal. ST, Special topics |
container_volume | 230 |
creator | Kumar, P. Bharath Suripeddi, Srinivas |
description | In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina
(
Al
2
O
3
)
, copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heating and velocity slip at the walls are taken into consideration. Numerical results are obtained by solving the transformed differential equations using the Runge–Kutta fourth-order in addition to the shooting method. Influences of several flow controlling parameters including Grashof number, cross-flow Reynolds number, Hartmann number and frequency parameter on velocity and temperature profiles are examined graphically. The results elucidates that the velocity-slip plays an important role in increasing the heat transfer and velocity of the nanofluid. Further, the heat transfer rate by means of Nusselt number against different parameters is studied and the numerical results obtained are presented. It shows that heat transfer rate at the injection wall increased with increasing Grashof number, frequency parameter and radiation parameter. |
doi_str_mv | 10.1140/epjs/s11734-021-00057-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546077936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546077936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6c1fba32d9c771de095b517439164a086df2725162aed5d824438712918735573</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhiMEEqVwBiyxDvX4ESfLqioPqRIsYG25idOkcu1gJ6DuuAM35CS4BMSS1YxG3z-j-ZLkEvA1AMMz3W3DLAAIylJMIMUYc5Hyo2QCBYc0YxiOf3vK-WlyFsI2Mhkp6CRp58i6XiNnUd9o1A0mqL41GtXGvSFXo2ZfebdTG6v7tkTLvW_t5vP949G9aWOQVdbVZmirmPZu2DRIoVftI6oM6lwcBVQ2ylptzpOTWpmgL37qNHm-WT4t7tLVw-39Yr5KS0pZn2Yl1GtFSVWUQkClccHXHASjBWRM4TyraiIIh4woXfEqJ4zRXAApIBfxPUGnydW4t_PuZdChl1s3eBtPSsJZhoUoaBYpMVKldyF4XcvOtzvl9xKwPHiVB69y9CqjV_ntVfKYzMdk6A4utP_b_1_0C3H5gAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546077936</pqid></control><display><type>article</type><title>A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel</title><source>SpringerLink (Online service)</source><creator>Kumar, P. Bharath ; Suripeddi, Srinivas</creator><creatorcontrib>Kumar, P. Bharath ; Suripeddi, Srinivas</creatorcontrib><description>In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina
(
Al
2
O
3
)
, copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heating and velocity slip at the walls are taken into consideration. Numerical results are obtained by solving the transformed differential equations using the Runge–Kutta fourth-order in addition to the shooting method. Influences of several flow controlling parameters including Grashof number, cross-flow Reynolds number, Hartmann number and frequency parameter on velocity and temperature profiles are examined graphically. The results elucidates that the velocity-slip plays an important role in increasing the heat transfer and velocity of the nanofluid. Further, the heat transfer rate by means of Nusselt number against different parameters is studied and the numerical results obtained are presented. It shows that heat transfer rate at the injection wall increased with increasing Grashof number, frequency parameter and radiation parameter.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjs/s11734-021-00057-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aluminum oxide ; Atomic ; Classical and Continuum Physics ; Computational fluid dynamics ; Condensed Matter Physics ; Copper ; Cross flow ; Differential equations ; Fluid flow ; Gold ; Grashof number ; Hartmann number ; Heat transfer ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Nanofluids ; Nanoparticles ; Optical and Plasma Physics ; Parameters ; Physics ; Physics and Astronomy ; Regular Article ; Reynolds number ; Runge-Kutta method ; Silver ; Slip ; Temperature profiles ; Transport Properties of Non-Newtonian Nanofluids and Applications ; Unsteady flow ; Velocity</subject><ispartof>The European physical journal. ST, Special topics, 2021-07, Vol.230 (5), p.1465-1474</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6c1fba32d9c771de095b517439164a086df2725162aed5d824438712918735573</citedby><cites>FETCH-LOGICAL-c334t-6c1fba32d9c771de095b517439164a086df2725162aed5d824438712918735573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjs/s11734-021-00057-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjs/s11734-021-00057-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, P. Bharath</creatorcontrib><creatorcontrib>Suripeddi, Srinivas</creatorcontrib><title>A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina
(
Al
2
O
3
)
, copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heating and velocity slip at the walls are taken into consideration. Numerical results are obtained by solving the transformed differential equations using the Runge–Kutta fourth-order in addition to the shooting method. Influences of several flow controlling parameters including Grashof number, cross-flow Reynolds number, Hartmann number and frequency parameter on velocity and temperature profiles are examined graphically. The results elucidates that the velocity-slip plays an important role in increasing the heat transfer and velocity of the nanofluid. Further, the heat transfer rate by means of Nusselt number against different parameters is studied and the numerical results obtained are presented. It shows that heat transfer rate at the injection wall increased with increasing Grashof number, frequency parameter and radiation parameter.</description><subject>Aluminum oxide</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Computational fluid dynamics</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Cross flow</subject><subject>Differential equations</subject><subject>Fluid flow</subject><subject>Gold</subject><subject>Grashof number</subject><subject>Hartmann number</subject><subject>Heat transfer</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Reynolds number</subject><subject>Runge-Kutta method</subject><subject>Silver</subject><subject>Slip</subject><subject>Temperature profiles</subject><subject>Transport Properties of Non-Newtonian Nanofluids and Applications</subject><subject>Unsteady flow</subject><subject>Velocity</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtOwzAQhiMEEqVwBiyxDvX4ESfLqioPqRIsYG25idOkcu1gJ6DuuAM35CS4BMSS1YxG3z-j-ZLkEvA1AMMz3W3DLAAIylJMIMUYc5Hyo2QCBYc0YxiOf3vK-WlyFsI2Mhkp6CRp58i6XiNnUd9o1A0mqL41GtXGvSFXo2ZfebdTG6v7tkTLvW_t5vP949G9aWOQVdbVZmirmPZu2DRIoVftI6oM6lwcBVQ2ylptzpOTWpmgL37qNHm-WT4t7tLVw-39Yr5KS0pZn2Yl1GtFSVWUQkClccHXHASjBWRM4TyraiIIh4woXfEqJ4zRXAApIBfxPUGnydW4t_PuZdChl1s3eBtPSsJZhoUoaBYpMVKldyF4XcvOtzvl9xKwPHiVB69y9CqjV_ntVfKYzMdk6A4utP_b_1_0C3H5gAQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kumar, P. Bharath</creator><creator>Suripeddi, Srinivas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210701</creationdate><title>A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel</title><author>Kumar, P. Bharath ; Suripeddi, Srinivas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6c1fba32d9c771de095b517439164a086df2725162aed5d824438712918735573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Computational fluid dynamics</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Cross flow</topic><topic>Differential equations</topic><topic>Fluid flow</topic><topic>Gold</topic><topic>Grashof number</topic><topic>Hartmann number</topic><topic>Heat transfer</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Reynolds number</topic><topic>Runge-Kutta method</topic><topic>Silver</topic><topic>Slip</topic><topic>Temperature profiles</topic><topic>Transport Properties of Non-Newtonian Nanofluids and Applications</topic><topic>Unsteady flow</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, P. Bharath</creatorcontrib><creatorcontrib>Suripeddi, Srinivas</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, P. Bharath</au><au>Suripeddi, Srinivas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>230</volume><issue>5</issue><spage>1465</spage><epage>1474</epage><pages>1465-1474</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>In this study, the pulsating flow of hydromagnetic nanofluid in a vertical porous channel has been investigated. Blood is considered as a base fluid that is non-Newtonian, and alumina
(
Al
2
O
3
)
, copper (Cu), silver (Ag) and gold (Au) are considered as nanoparticles. The effects of Joule’s heating and velocity slip at the walls are taken into consideration. Numerical results are obtained by solving the transformed differential equations using the Runge–Kutta fourth-order in addition to the shooting method. Influences of several flow controlling parameters including Grashof number, cross-flow Reynolds number, Hartmann number and frequency parameter on velocity and temperature profiles are examined graphically. The results elucidates that the velocity-slip plays an important role in increasing the heat transfer and velocity of the nanofluid. Further, the heat transfer rate by means of Nusselt number against different parameters is studied and the numerical results obtained are presented. It shows that heat transfer rate at the injection wall increased with increasing Grashof number, frequency parameter and radiation parameter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjs/s11734-021-00057-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2021-07, Vol.230 (5), p.1465-1474 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_proquest_journals_2546077936 |
source | SpringerLink (Online service) |
subjects | Aluminum oxide Atomic Classical and Continuum Physics Computational fluid dynamics Condensed Matter Physics Copper Cross flow Differential equations Fluid flow Gold Grashof number Hartmann number Heat transfer Materials Science Measurement Science and Instrumentation Molecular Nanofluids Nanoparticles Optical and Plasma Physics Parameters Physics Physics and Astronomy Regular Article Reynolds number Runge-Kutta method Silver Slip Temperature profiles Transport Properties of Non-Newtonian Nanofluids and Applications Unsteady flow Velocity |
title | A note on the pulsatile flow of hydromagnetic Eyring–Powell nanofluid through a vertical porous channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20the%20pulsatile%20flow%20of%20hydromagnetic%20Eyring%E2%80%93Powell%20nanofluid%20through%20a%20vertical%20porous%20channel&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Kumar,%20P.%20Bharath&rft.date=2021-07-01&rft.volume=230&rft.issue=5&rft.spage=1465&rft.epage=1474&rft.pages=1465-1474&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjs/s11734-021-00057-5&rft_dat=%3Cproquest_cross%3E2546077936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546077936&rft_id=info:pmid/&rfr_iscdi=true |