A splitting/polynomial chaos expansion approach for stochastic evolution equations
In this paper, we combine deterministic splitting methods with a polynomial chaos expansion method for solving stochastic parabolic evolution problems. The stochastic differential equation is reduced to a system of deterministic equations that we solve efficiently by splitting methods. The method ca...
Gespeichert in:
Veröffentlicht in: | Journal of evolution equations 2021-06, Vol.21 (2), p.1345-1381 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1381 |
---|---|
container_issue | 2 |
container_start_page | 1345 |
container_title | Journal of evolution equations |
container_volume | 21 |
creator | Kofler, Andreas Levajković, Tijana Mena, Hermann Ostermann, Alexander |
description | In this paper, we combine deterministic splitting methods with a polynomial chaos expansion method for solving stochastic parabolic evolution problems. The stochastic differential equation is reduced to a system of deterministic equations that we solve efficiently by splitting methods. The method can be applied to a wide class of problems where the related stochastic processes are given uniquely in terms of stochastic polynomials. A comprehensive convergence analysis is provided and numerical experiments validate our approach. |
doi_str_mv | 10.1007/s00028-020-00627-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2546077851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546077851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6c694aefb492e9db1f1b0e0230750c4e4344cf7ec1b0998a5bf2f6d8548857643</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrf6ApwXPa1-yySY5lqJWKAii55BNk3bLdrNNdsX-vamrePP0hvdm5g2D0C2GewzAZxEAiMiBQA5QEp6zMzTBlNC8IEDOfzGW8hJdxbgDwJwJNkGv8yx2Td33dbuZdb45tn5f6yYzW-1jZj873cbat5nuuuC12WbOhyz2Pt1jX5vMfvhm6E8Mexj0CcRrdOF0E-3Nz5yi98eHt8UyX708PS_mq9ykHH1emlJSbV1FJbFyXWGHK7BACuAMDLW0oNQ4bk1aSyk0qxxx5VowKgTjJS2m6G70TckOg4292vkhtOmlIoyWwLlgOLHIyDLBxxisU12o9zocFQZ16k6N3anUnfruTrEkKkZRTOR2Y8Of9T-qL1rIcqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546077851</pqid></control><display><type>article</type><title>A splitting/polynomial chaos expansion approach for stochastic evolution equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kofler, Andreas ; Levajković, Tijana ; Mena, Hermann ; Ostermann, Alexander</creator><creatorcontrib>Kofler, Andreas ; Levajković, Tijana ; Mena, Hermann ; Ostermann, Alexander</creatorcontrib><description>In this paper, we combine deterministic splitting methods with a polynomial chaos expansion method for solving stochastic parabolic evolution problems. The stochastic differential equation is reduced to a system of deterministic equations that we solve efficiently by splitting methods. The method can be applied to a wide class of problems where the related stochastic processes are given uniquely in terms of stochastic polynomials. A comprehensive convergence analysis is provided and numerical experiments validate our approach.</description><identifier>ISSN: 1424-3199</identifier><identifier>EISSN: 1424-3202</identifier><identifier>DOI: 10.1007/s00028-020-00627-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Differential equations ; Evolution ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials ; Splitting ; Stochastic processes</subject><ispartof>Journal of evolution equations, 2021-06, Vol.21 (2), p.1345-1381</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6c694aefb492e9db1f1b0e0230750c4e4344cf7ec1b0998a5bf2f6d8548857643</citedby><cites>FETCH-LOGICAL-c319t-6c694aefb492e9db1f1b0e0230750c4e4344cf7ec1b0998a5bf2f6d8548857643</cites><orcidid>0000-0002-1491-9056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00028-020-00627-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00028-020-00627-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Kofler, Andreas</creatorcontrib><creatorcontrib>Levajković, Tijana</creatorcontrib><creatorcontrib>Mena, Hermann</creatorcontrib><creatorcontrib>Ostermann, Alexander</creatorcontrib><title>A splitting/polynomial chaos expansion approach for stochastic evolution equations</title><title>Journal of evolution equations</title><addtitle>J. Evol. Equ</addtitle><description>In this paper, we combine deterministic splitting methods with a polynomial chaos expansion method for solving stochastic parabolic evolution problems. The stochastic differential equation is reduced to a system of deterministic equations that we solve efficiently by splitting methods. The method can be applied to a wide class of problems where the related stochastic processes are given uniquely in terms of stochastic polynomials. A comprehensive convergence analysis is provided and numerical experiments validate our approach.</description><subject>Analysis</subject><subject>Differential equations</subject><subject>Evolution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Splitting</subject><subject>Stochastic processes</subject><issn>1424-3199</issn><issn>1424-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrf6ApwXPa1-yySY5lqJWKAii55BNk3bLdrNNdsX-vamrePP0hvdm5g2D0C2GewzAZxEAiMiBQA5QEp6zMzTBlNC8IEDOfzGW8hJdxbgDwJwJNkGv8yx2Td33dbuZdb45tn5f6yYzW-1jZj873cbat5nuuuC12WbOhyz2Pt1jX5vMfvhm6E8Mexj0CcRrdOF0E-3Nz5yi98eHt8UyX708PS_mq9ykHH1emlJSbV1FJbFyXWGHK7BACuAMDLW0oNQ4bk1aSyk0qxxx5VowKgTjJS2m6G70TckOg4292vkhtOmlIoyWwLlgOLHIyDLBxxisU12o9zocFQZ16k6N3anUnfruTrEkKkZRTOR2Y8Of9T-qL1rIcqQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Kofler, Andreas</creator><creator>Levajković, Tijana</creator><creator>Mena, Hermann</creator><creator>Ostermann, Alexander</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1491-9056</orcidid></search><sort><creationdate>20210601</creationdate><title>A splitting/polynomial chaos expansion approach for stochastic evolution equations</title><author>Kofler, Andreas ; Levajković, Tijana ; Mena, Hermann ; Ostermann, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6c694aefb492e9db1f1b0e0230750c4e4344cf7ec1b0998a5bf2f6d8548857643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Differential equations</topic><topic>Evolution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Splitting</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kofler, Andreas</creatorcontrib><creatorcontrib>Levajković, Tijana</creatorcontrib><creatorcontrib>Mena, Hermann</creatorcontrib><creatorcontrib>Ostermann, Alexander</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of evolution equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kofler, Andreas</au><au>Levajković, Tijana</au><au>Mena, Hermann</au><au>Ostermann, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A splitting/polynomial chaos expansion approach for stochastic evolution equations</atitle><jtitle>Journal of evolution equations</jtitle><stitle>J. Evol. Equ</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>1345</spage><epage>1381</epage><pages>1345-1381</pages><issn>1424-3199</issn><eissn>1424-3202</eissn><abstract>In this paper, we combine deterministic splitting methods with a polynomial chaos expansion method for solving stochastic parabolic evolution problems. The stochastic differential equation is reduced to a system of deterministic equations that we solve efficiently by splitting methods. The method can be applied to a wide class of problems where the related stochastic processes are given uniquely in terms of stochastic polynomials. A comprehensive convergence analysis is provided and numerical experiments validate our approach.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00028-020-00627-5</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-1491-9056</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-3199 |
ispartof | Journal of evolution equations, 2021-06, Vol.21 (2), p.1345-1381 |
issn | 1424-3199 1424-3202 |
language | eng |
recordid | cdi_proquest_journals_2546077851 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Differential equations Evolution Mathematical analysis Mathematics Mathematics and Statistics Polynomials Splitting Stochastic processes |
title | A splitting/polynomial chaos expansion approach for stochastic evolution equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20splitting/polynomial%20chaos%20expansion%20approach%20for%20stochastic%20evolution%20equations&rft.jtitle=Journal%20of%20evolution%20equations&rft.au=Kofler,%20Andreas&rft.date=2021-06-01&rft.volume=21&rft.issue=2&rft.spage=1345&rft.epage=1381&rft.pages=1345-1381&rft.issn=1424-3199&rft.eissn=1424-3202&rft_id=info:doi/10.1007/s00028-020-00627-5&rft_dat=%3Cproquest_cross%3E2546077851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546077851&rft_id=info:pmid/&rfr_iscdi=true |