Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide
Graphene mesosponge (GMS) is a new class of mesoporous carbon consisting mainly of single-layer graphene walls. GMS has traditionally been synthesized via chemical vapour deposition (CVD) of methane onto a template of alumina (Al 2 O 3 ) nanoparticles, which catalyses methane conversion. However, th...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (25), p.14296-14308 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14308 |
---|---|
container_issue | 25 |
container_start_page | 14296 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Sunahiro, Shogo Nomura, Keita Goto, Shunsuke Kanamaru, Kazuya Tang, Rui Yamamoto, Masanori Yoshii, Takeharu N. Kondo, Junko Zhao, Qi Ghulam Nabi, Azeem Crespo-Otero, Rachel Di Tommaso, Devis Kyotani, Takashi Nishihara, Hirotomo |
description | Graphene mesosponge (GMS) is a new class of mesoporous carbon consisting mainly of single-layer graphene walls. GMS has traditionally been synthesized
via
chemical vapour deposition (CVD) of methane onto a template of alumina (Al
2
O
3
) nanoparticles, which catalyses methane conversion. However, the Al
2
O
3
template needs to be removed using costly and environmentally concerning processes such as hydrofluoric acid or concentrated base. In this work, we examine methane conversion catalysed by magnesium oxide (MgO) and utilized MgO as an alternative catalytic template. In contrast to Al
2
O
3
, a solid acid catalyst, MgO is a solid base catalyst that is also active for methane conversion into graphene sheets but dissolves easily in hydrochloric acid. We have investigated the reaction mechanism using
in situ
weight measurements and gas-emission analysis during CVD complemented by density functional theory calculations. We found that the pure MgO surface is activated
via
O-elimination with methane above 778 °C. On the activated MgO surface, methane is converted into a graphene sheet with a relatively low activation energy of 134 kJ mol
−1
. Once the first graphene layer is formed, the methane-to-graphene conversion rate decreases and the activation energy increases to 234 kJ mol
−1
, which is comparable to that reported in thermal methane-CVD on carbon. As a result of the faster growth rate of the first layer with respect to additional layers, it is easier to obtain single-graphene layers using MgO. The MgO-derived GMS has a unique combination of properties including a high surface area, developed mesopores, high oxidation resistance, significant softness and elasticity, very low bulk modulus (0.05 GPa), and force-driven reversible liquid–gas phase transition. Thus, we expect the MgO-derived GMS can be employed in a variety of applications including high-voltage supercapacitors and as a new type of heat pump based on the force-driven phase transition. |
doi_str_mv | 10.1039/D1TA02326H |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545974597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545974597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6d9b8446747608c379541781c79da89ffca4894bb11efe88861006f84a61ad553</originalsourceid><addsrcrecordid>eNpFkN9LwzAQx4MoOOZe_AsCvgnVpE3z43HMHxMGPjjxsaRp0mWsTU1Ssf-9GRM97riD-_C94wvANUZ3GBXi_gFvlygvcro-A7MclShjRNDzv5nzS7AIYY9ScISoEDPw8Tb1caeDDdAZ2Ho57HSvYaeDC4PrWw2_rIRKRnmYolVpEXcyAY1WrhtcsNG6HqbsZNsnmbGD7ts2-gpcGHkIevHb5-D96XG7Wmeb1-eX1XKTqVzgmNFG1JwQygijiKuCiZJgxrFiopFcGKMk4YLUNcbaaM45xelxw4mkWDZlWczBzUl38O5z1CFWezf6Pp2s8pKUgh0rUbcnSnkXgtemGrztpJ8qjKqjd9W_d8UPMuRg-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545974597</pqid></control><display><type>article</type><title>Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sunahiro, Shogo ; Nomura, Keita ; Goto, Shunsuke ; Kanamaru, Kazuya ; Tang, Rui ; Yamamoto, Masanori ; Yoshii, Takeharu ; N. Kondo, Junko ; Zhao, Qi ; Ghulam Nabi, Azeem ; Crespo-Otero, Rachel ; Di Tommaso, Devis ; Kyotani, Takashi ; Nishihara, Hirotomo</creator><creatorcontrib>Sunahiro, Shogo ; Nomura, Keita ; Goto, Shunsuke ; Kanamaru, Kazuya ; Tang, Rui ; Yamamoto, Masanori ; Yoshii, Takeharu ; N. Kondo, Junko ; Zhao, Qi ; Ghulam Nabi, Azeem ; Crespo-Otero, Rachel ; Di Tommaso, Devis ; Kyotani, Takashi ; Nishihara, Hirotomo</creatorcontrib><description>Graphene mesosponge (GMS) is a new class of mesoporous carbon consisting mainly of single-layer graphene walls. GMS has traditionally been synthesized
via
chemical vapour deposition (CVD) of methane onto a template of alumina (Al
2
O
3
) nanoparticles, which catalyses methane conversion. However, the Al
2
O
3
template needs to be removed using costly and environmentally concerning processes such as hydrofluoric acid or concentrated base. In this work, we examine methane conversion catalysed by magnesium oxide (MgO) and utilized MgO as an alternative catalytic template. In contrast to Al
2
O
3
, a solid acid catalyst, MgO is a solid base catalyst that is also active for methane conversion into graphene sheets but dissolves easily in hydrochloric acid. We have investigated the reaction mechanism using
in situ
weight measurements and gas-emission analysis during CVD complemented by density functional theory calculations. We found that the pure MgO surface is activated
via
O-elimination with methane above 778 °C. On the activated MgO surface, methane is converted into a graphene sheet with a relatively low activation energy of 134 kJ mol
−1
. Once the first graphene layer is formed, the methane-to-graphene conversion rate decreases and the activation energy increases to 234 kJ mol
−1
, which is comparable to that reported in thermal methane-CVD on carbon. As a result of the faster growth rate of the first layer with respect to additional layers, it is easier to obtain single-graphene layers using MgO. The MgO-derived GMS has a unique combination of properties including a high surface area, developed mesopores, high oxidation resistance, significant softness and elasticity, very low bulk modulus (0.05 GPa), and force-driven reversible liquid–gas phase transition. Thus, we expect the MgO-derived GMS can be employed in a variety of applications including high-voltage supercapacitors and as a new type of heat pump based on the force-driven phase transition.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D1TA02326H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activation energy ; Aluminum oxide ; Bulk modulus ; Carbon ; Catalysts ; Chemical synthesis ; Chemical vapor deposition ; Conversion ; Density functional theory ; Emission analysis ; Emission measurements ; Graphene ; Growth rate ; Heat exchangers ; Heat pumps ; Hydrochloric acid ; Hydrofluoric acid ; Magnesium ; Magnesium oxide ; Methane ; Nanoparticles ; Oxidation ; Oxidation resistance ; Phase transitions ; Reaction mechanisms ; Softness ; Superconductors (materials) ; Vapor phases</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (25), p.14296-14308</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6d9b8446747608c379541781c79da89ffca4894bb11efe88861006f84a61ad553</citedby><cites>FETCH-LOGICAL-c291t-6d9b8446747608c379541781c79da89ffca4894bb11efe88861006f84a61ad553</cites><orcidid>0000-0002-8725-5350 ; 0000-0002-0126-2059 ; 0000-0003-1825-5776 ; 0000-0002-1869-6021 ; 0000-0002-7940-1266 ; 0000-0002-4485-4468 ; 0000-0001-6003-3048 ; 0000-0003-4497-4248 ; 0000-0001-8473-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sunahiro, Shogo</creatorcontrib><creatorcontrib>Nomura, Keita</creatorcontrib><creatorcontrib>Goto, Shunsuke</creatorcontrib><creatorcontrib>Kanamaru, Kazuya</creatorcontrib><creatorcontrib>Tang, Rui</creatorcontrib><creatorcontrib>Yamamoto, Masanori</creatorcontrib><creatorcontrib>Yoshii, Takeharu</creatorcontrib><creatorcontrib>N. Kondo, Junko</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><creatorcontrib>Ghulam Nabi, Azeem</creatorcontrib><creatorcontrib>Crespo-Otero, Rachel</creatorcontrib><creatorcontrib>Di Tommaso, Devis</creatorcontrib><creatorcontrib>Kyotani, Takashi</creatorcontrib><creatorcontrib>Nishihara, Hirotomo</creatorcontrib><title>Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Graphene mesosponge (GMS) is a new class of mesoporous carbon consisting mainly of single-layer graphene walls. GMS has traditionally been synthesized
via
chemical vapour deposition (CVD) of methane onto a template of alumina (Al
2
O
3
) nanoparticles, which catalyses methane conversion. However, the Al
2
O
3
template needs to be removed using costly and environmentally concerning processes such as hydrofluoric acid or concentrated base. In this work, we examine methane conversion catalysed by magnesium oxide (MgO) and utilized MgO as an alternative catalytic template. In contrast to Al
2
O
3
, a solid acid catalyst, MgO is a solid base catalyst that is also active for methane conversion into graphene sheets but dissolves easily in hydrochloric acid. We have investigated the reaction mechanism using
in situ
weight measurements and gas-emission analysis during CVD complemented by density functional theory calculations. We found that the pure MgO surface is activated
via
O-elimination with methane above 778 °C. On the activated MgO surface, methane is converted into a graphene sheet with a relatively low activation energy of 134 kJ mol
−1
. Once the first graphene layer is formed, the methane-to-graphene conversion rate decreases and the activation energy increases to 234 kJ mol
−1
, which is comparable to that reported in thermal methane-CVD on carbon. As a result of the faster growth rate of the first layer with respect to additional layers, it is easier to obtain single-graphene layers using MgO. The MgO-derived GMS has a unique combination of properties including a high surface area, developed mesopores, high oxidation resistance, significant softness and elasticity, very low bulk modulus (0.05 GPa), and force-driven reversible liquid–gas phase transition. Thus, we expect the MgO-derived GMS can be employed in a variety of applications including high-voltage supercapacitors and as a new type of heat pump based on the force-driven phase transition.</description><subject>Activation energy</subject><subject>Aluminum oxide</subject><subject>Bulk modulus</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Conversion</subject><subject>Density functional theory</subject><subject>Emission analysis</subject><subject>Emission measurements</subject><subject>Graphene</subject><subject>Growth rate</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Hydrochloric acid</subject><subject>Hydrofluoric acid</subject><subject>Magnesium</subject><subject>Magnesium oxide</subject><subject>Methane</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Phase transitions</subject><subject>Reaction mechanisms</subject><subject>Softness</subject><subject>Superconductors (materials)</subject><subject>Vapor phases</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkN9LwzAQx4MoOOZe_AsCvgnVpE3z43HMHxMGPjjxsaRp0mWsTU1Ssf-9GRM97riD-_C94wvANUZ3GBXi_gFvlygvcro-A7MclShjRNDzv5nzS7AIYY9ScISoEDPw8Tb1caeDDdAZ2Ho57HSvYaeDC4PrWw2_rIRKRnmYolVpEXcyAY1WrhtcsNG6HqbsZNsnmbGD7ts2-gpcGHkIevHb5-D96XG7Wmeb1-eX1XKTqVzgmNFG1JwQygijiKuCiZJgxrFiopFcGKMk4YLUNcbaaM45xelxw4mkWDZlWczBzUl38O5z1CFWezf6Pp2s8pKUgh0rUbcnSnkXgtemGrztpJ8qjKqjd9W_d8UPMuRg-A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Sunahiro, Shogo</creator><creator>Nomura, Keita</creator><creator>Goto, Shunsuke</creator><creator>Kanamaru, Kazuya</creator><creator>Tang, Rui</creator><creator>Yamamoto, Masanori</creator><creator>Yoshii, Takeharu</creator><creator>N. Kondo, Junko</creator><creator>Zhao, Qi</creator><creator>Ghulam Nabi, Azeem</creator><creator>Crespo-Otero, Rachel</creator><creator>Di Tommaso, Devis</creator><creator>Kyotani, Takashi</creator><creator>Nishihara, Hirotomo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8725-5350</orcidid><orcidid>https://orcid.org/0000-0002-0126-2059</orcidid><orcidid>https://orcid.org/0000-0003-1825-5776</orcidid><orcidid>https://orcid.org/0000-0002-1869-6021</orcidid><orcidid>https://orcid.org/0000-0002-7940-1266</orcidid><orcidid>https://orcid.org/0000-0002-4485-4468</orcidid><orcidid>https://orcid.org/0000-0001-6003-3048</orcidid><orcidid>https://orcid.org/0000-0003-4497-4248</orcidid><orcidid>https://orcid.org/0000-0001-8473-7015</orcidid></search><sort><creationdate>20210101</creationdate><title>Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide</title><author>Sunahiro, Shogo ; Nomura, Keita ; Goto, Shunsuke ; Kanamaru, Kazuya ; Tang, Rui ; Yamamoto, Masanori ; Yoshii, Takeharu ; N. Kondo, Junko ; Zhao, Qi ; Ghulam Nabi, Azeem ; Crespo-Otero, Rachel ; Di Tommaso, Devis ; Kyotani, Takashi ; Nishihara, Hirotomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6d9b8446747608c379541781c79da89ffca4894bb11efe88861006f84a61ad553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activation energy</topic><topic>Aluminum oxide</topic><topic>Bulk modulus</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Conversion</topic><topic>Density functional theory</topic><topic>Emission analysis</topic><topic>Emission measurements</topic><topic>Graphene</topic><topic>Growth rate</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Hydrochloric acid</topic><topic>Hydrofluoric acid</topic><topic>Magnesium</topic><topic>Magnesium oxide</topic><topic>Methane</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Phase transitions</topic><topic>Reaction mechanisms</topic><topic>Softness</topic><topic>Superconductors (materials)</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sunahiro, Shogo</creatorcontrib><creatorcontrib>Nomura, Keita</creatorcontrib><creatorcontrib>Goto, Shunsuke</creatorcontrib><creatorcontrib>Kanamaru, Kazuya</creatorcontrib><creatorcontrib>Tang, Rui</creatorcontrib><creatorcontrib>Yamamoto, Masanori</creatorcontrib><creatorcontrib>Yoshii, Takeharu</creatorcontrib><creatorcontrib>N. Kondo, Junko</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><creatorcontrib>Ghulam Nabi, Azeem</creatorcontrib><creatorcontrib>Crespo-Otero, Rachel</creatorcontrib><creatorcontrib>Di Tommaso, Devis</creatorcontrib><creatorcontrib>Kyotani, Takashi</creatorcontrib><creatorcontrib>Nishihara, Hirotomo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sunahiro, Shogo</au><au>Nomura, Keita</au><au>Goto, Shunsuke</au><au>Kanamaru, Kazuya</au><au>Tang, Rui</au><au>Yamamoto, Masanori</au><au>Yoshii, Takeharu</au><au>N. Kondo, Junko</au><au>Zhao, Qi</au><au>Ghulam Nabi, Azeem</au><au>Crespo-Otero, Rachel</au><au>Di Tommaso, Devis</au><au>Kyotani, Takashi</au><au>Nishihara, Hirotomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>25</issue><spage>14296</spage><epage>14308</epage><pages>14296-14308</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Graphene mesosponge (GMS) is a new class of mesoporous carbon consisting mainly of single-layer graphene walls. GMS has traditionally been synthesized
via
chemical vapour deposition (CVD) of methane onto a template of alumina (Al
2
O
3
) nanoparticles, which catalyses methane conversion. However, the Al
2
O
3
template needs to be removed using costly and environmentally concerning processes such as hydrofluoric acid or concentrated base. In this work, we examine methane conversion catalysed by magnesium oxide (MgO) and utilized MgO as an alternative catalytic template. In contrast to Al
2
O
3
, a solid acid catalyst, MgO is a solid base catalyst that is also active for methane conversion into graphene sheets but dissolves easily in hydrochloric acid. We have investigated the reaction mechanism using
in situ
weight measurements and gas-emission analysis during CVD complemented by density functional theory calculations. We found that the pure MgO surface is activated
via
O-elimination with methane above 778 °C. On the activated MgO surface, methane is converted into a graphene sheet with a relatively low activation energy of 134 kJ mol
−1
. Once the first graphene layer is formed, the methane-to-graphene conversion rate decreases and the activation energy increases to 234 kJ mol
−1
, which is comparable to that reported in thermal methane-CVD on carbon. As a result of the faster growth rate of the first layer with respect to additional layers, it is easier to obtain single-graphene layers using MgO. The MgO-derived GMS has a unique combination of properties including a high surface area, developed mesopores, high oxidation resistance, significant softness and elasticity, very low bulk modulus (0.05 GPa), and force-driven reversible liquid–gas phase transition. Thus, we expect the MgO-derived GMS can be employed in a variety of applications including high-voltage supercapacitors and as a new type of heat pump based on the force-driven phase transition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D1TA02326H</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8725-5350</orcidid><orcidid>https://orcid.org/0000-0002-0126-2059</orcidid><orcidid>https://orcid.org/0000-0003-1825-5776</orcidid><orcidid>https://orcid.org/0000-0002-1869-6021</orcidid><orcidid>https://orcid.org/0000-0002-7940-1266</orcidid><orcidid>https://orcid.org/0000-0002-4485-4468</orcidid><orcidid>https://orcid.org/0000-0001-6003-3048</orcidid><orcidid>https://orcid.org/0000-0003-4497-4248</orcidid><orcidid>https://orcid.org/0000-0001-8473-7015</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (25), p.14296-14308 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2545974597 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Activation energy Aluminum oxide Bulk modulus Carbon Catalysts Chemical synthesis Chemical vapor deposition Conversion Density functional theory Emission analysis Emission measurements Graphene Growth rate Heat exchangers Heat pumps Hydrochloric acid Hydrofluoric acid Magnesium Magnesium oxide Methane Nanoparticles Oxidation Oxidation resistance Phase transitions Reaction mechanisms Softness Superconductors (materials) Vapor phases |
title | Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20graphene%20mesosponge%20via%20catalytic%20methane%20decomposition%20on%20magnesium%20oxide&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Sunahiro,%20Shogo&rft.date=2021-01-01&rft.volume=9&rft.issue=25&rft.spage=14296&rft.epage=14308&rft.pages=14296-14308&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D1TA02326H&rft_dat=%3Cproquest_cross%3E2545974597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545974597&rft_id=info:pmid/&rfr_iscdi=true |