Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide

Graphene mesosponge (GMS) is a new class of mesoporous carbon consisting mainly of single-layer graphene walls. GMS has traditionally been synthesized via chemical vapour deposition (CVD) of methane onto a template of alumina (Al 2 O 3 ) nanoparticles, which catalyses methane conversion. However, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (25), p.14296-14308
Hauptverfasser: Sunahiro, Shogo, Nomura, Keita, Goto, Shunsuke, Kanamaru, Kazuya, Tang, Rui, Yamamoto, Masanori, Yoshii, Takeharu, N. Kondo, Junko, Zhao, Qi, Ghulam Nabi, Azeem, Crespo-Otero, Rachel, Di Tommaso, Devis, Kyotani, Takashi, Nishihara, Hirotomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14308
container_issue 25
container_start_page 14296
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Sunahiro, Shogo
Nomura, Keita
Goto, Shunsuke
Kanamaru, Kazuya
Tang, Rui
Yamamoto, Masanori
Yoshii, Takeharu
N. Kondo, Junko
Zhao, Qi
Ghulam Nabi, Azeem
Crespo-Otero, Rachel
Di Tommaso, Devis
Kyotani, Takashi
Nishihara, Hirotomo
description Graphene mesosponge (GMS) is a new class of mesoporous carbon consisting mainly of single-layer graphene walls. GMS has traditionally been synthesized via chemical vapour deposition (CVD) of methane onto a template of alumina (Al 2 O 3 ) nanoparticles, which catalyses methane conversion. However, the Al 2 O 3 template needs to be removed using costly and environmentally concerning processes such as hydrofluoric acid or concentrated base. In this work, we examine methane conversion catalysed by magnesium oxide (MgO) and utilized MgO as an alternative catalytic template. In contrast to Al 2 O 3 , a solid acid catalyst, MgO is a solid base catalyst that is also active for methane conversion into graphene sheets but dissolves easily in hydrochloric acid. We have investigated the reaction mechanism using in situ weight measurements and gas-emission analysis during CVD complemented by density functional theory calculations. We found that the pure MgO surface is activated via O-elimination with methane above 778 °C. On the activated MgO surface, methane is converted into a graphene sheet with a relatively low activation energy of 134 kJ mol −1 . Once the first graphene layer is formed, the methane-to-graphene conversion rate decreases and the activation energy increases to 234 kJ mol −1 , which is comparable to that reported in thermal methane-CVD on carbon. As a result of the faster growth rate of the first layer with respect to additional layers, it is easier to obtain single-graphene layers using MgO. The MgO-derived GMS has a unique combination of properties including a high surface area, developed mesopores, high oxidation resistance, significant softness and elasticity, very low bulk modulus (0.05 GPa), and force-driven reversible liquid–gas phase transition. Thus, we expect the MgO-derived GMS can be employed in a variety of applications including high-voltage supercapacitors and as a new type of heat pump based on the force-driven phase transition.
doi_str_mv 10.1039/D1TA02326H
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545974597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545974597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6d9b8446747608c379541781c79da89ffca4894bb11efe88861006f84a61ad553</originalsourceid><addsrcrecordid>eNpFkN9LwzAQx4MoOOZe_AsCvgnVpE3z43HMHxMGPjjxsaRp0mWsTU1Ssf-9GRM97riD-_C94wvANUZ3GBXi_gFvlygvcro-A7MclShjRNDzv5nzS7AIYY9ScISoEDPw8Tb1caeDDdAZ2Ho57HSvYaeDC4PrWw2_rIRKRnmYolVpEXcyAY1WrhtcsNG6HqbsZNsnmbGD7ts2-gpcGHkIevHb5-D96XG7Wmeb1-eX1XKTqVzgmNFG1JwQygijiKuCiZJgxrFiopFcGKMk4YLUNcbaaM45xelxw4mkWDZlWczBzUl38O5z1CFWezf6Pp2s8pKUgh0rUbcnSnkXgtemGrztpJ8qjKqjd9W_d8UPMuRg-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545974597</pqid></control><display><type>article</type><title>Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sunahiro, Shogo ; Nomura, Keita ; Goto, Shunsuke ; Kanamaru, Kazuya ; Tang, Rui ; Yamamoto, Masanori ; Yoshii, Takeharu ; N. Kondo, Junko ; Zhao, Qi ; Ghulam Nabi, Azeem ; Crespo-Otero, Rachel ; Di Tommaso, Devis ; Kyotani, Takashi ; Nishihara, Hirotomo</creator><creatorcontrib>Sunahiro, Shogo ; Nomura, Keita ; Goto, Shunsuke ; Kanamaru, Kazuya ; Tang, Rui ; Yamamoto, Masanori ; Yoshii, Takeharu ; N. Kondo, Junko ; Zhao, Qi ; Ghulam Nabi, Azeem ; Crespo-Otero, Rachel ; Di Tommaso, Devis ; Kyotani, Takashi ; Nishihara, Hirotomo</creatorcontrib><description>Graphene mesosponge (GMS) is a new class of mesoporous carbon consisting mainly of single-layer graphene walls. GMS has traditionally been synthesized via chemical vapour deposition (CVD) of methane onto a template of alumina (Al 2 O 3 ) nanoparticles, which catalyses methane conversion. However, the Al 2 O 3 template needs to be removed using costly and environmentally concerning processes such as hydrofluoric acid or concentrated base. In this work, we examine methane conversion catalysed by magnesium oxide (MgO) and utilized MgO as an alternative catalytic template. In contrast to Al 2 O 3 , a solid acid catalyst, MgO is a solid base catalyst that is also active for methane conversion into graphene sheets but dissolves easily in hydrochloric acid. We have investigated the reaction mechanism using in situ weight measurements and gas-emission analysis during CVD complemented by density functional theory calculations. We found that the pure MgO surface is activated via O-elimination with methane above 778 °C. On the activated MgO surface, methane is converted into a graphene sheet with a relatively low activation energy of 134 kJ mol −1 . Once the first graphene layer is formed, the methane-to-graphene conversion rate decreases and the activation energy increases to 234 kJ mol −1 , which is comparable to that reported in thermal methane-CVD on carbon. As a result of the faster growth rate of the first layer with respect to additional layers, it is easier to obtain single-graphene layers using MgO. The MgO-derived GMS has a unique combination of properties including a high surface area, developed mesopores, high oxidation resistance, significant softness and elasticity, very low bulk modulus (0.05 GPa), and force-driven reversible liquid–gas phase transition. Thus, we expect the MgO-derived GMS can be employed in a variety of applications including high-voltage supercapacitors and as a new type of heat pump based on the force-driven phase transition.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D1TA02326H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activation energy ; Aluminum oxide ; Bulk modulus ; Carbon ; Catalysts ; Chemical synthesis ; Chemical vapor deposition ; Conversion ; Density functional theory ; Emission analysis ; Emission measurements ; Graphene ; Growth rate ; Heat exchangers ; Heat pumps ; Hydrochloric acid ; Hydrofluoric acid ; Magnesium ; Magnesium oxide ; Methane ; Nanoparticles ; Oxidation ; Oxidation resistance ; Phase transitions ; Reaction mechanisms ; Softness ; Superconductors (materials) ; Vapor phases</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (25), p.14296-14308</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-6d9b8446747608c379541781c79da89ffca4894bb11efe88861006f84a61ad553</citedby><cites>FETCH-LOGICAL-c291t-6d9b8446747608c379541781c79da89ffca4894bb11efe88861006f84a61ad553</cites><orcidid>0000-0002-8725-5350 ; 0000-0002-0126-2059 ; 0000-0003-1825-5776 ; 0000-0002-1869-6021 ; 0000-0002-7940-1266 ; 0000-0002-4485-4468 ; 0000-0001-6003-3048 ; 0000-0003-4497-4248 ; 0000-0001-8473-7015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sunahiro, Shogo</creatorcontrib><creatorcontrib>Nomura, Keita</creatorcontrib><creatorcontrib>Goto, Shunsuke</creatorcontrib><creatorcontrib>Kanamaru, Kazuya</creatorcontrib><creatorcontrib>Tang, Rui</creatorcontrib><creatorcontrib>Yamamoto, Masanori</creatorcontrib><creatorcontrib>Yoshii, Takeharu</creatorcontrib><creatorcontrib>N. Kondo, Junko</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><creatorcontrib>Ghulam Nabi, Azeem</creatorcontrib><creatorcontrib>Crespo-Otero, Rachel</creatorcontrib><creatorcontrib>Di Tommaso, Devis</creatorcontrib><creatorcontrib>Kyotani, Takashi</creatorcontrib><creatorcontrib>Nishihara, Hirotomo</creatorcontrib><title>Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Graphene mesosponge (GMS) is a new class of mesoporous carbon consisting mainly of single-layer graphene walls. GMS has traditionally been synthesized via chemical vapour deposition (CVD) of methane onto a template of alumina (Al 2 O 3 ) nanoparticles, which catalyses methane conversion. However, the Al 2 O 3 template needs to be removed using costly and environmentally concerning processes such as hydrofluoric acid or concentrated base. In this work, we examine methane conversion catalysed by magnesium oxide (MgO) and utilized MgO as an alternative catalytic template. In contrast to Al 2 O 3 , a solid acid catalyst, MgO is a solid base catalyst that is also active for methane conversion into graphene sheets but dissolves easily in hydrochloric acid. We have investigated the reaction mechanism using in situ weight measurements and gas-emission analysis during CVD complemented by density functional theory calculations. We found that the pure MgO surface is activated via O-elimination with methane above 778 °C. On the activated MgO surface, methane is converted into a graphene sheet with a relatively low activation energy of 134 kJ mol −1 . Once the first graphene layer is formed, the methane-to-graphene conversion rate decreases and the activation energy increases to 234 kJ mol −1 , which is comparable to that reported in thermal methane-CVD on carbon. As a result of the faster growth rate of the first layer with respect to additional layers, it is easier to obtain single-graphene layers using MgO. The MgO-derived GMS has a unique combination of properties including a high surface area, developed mesopores, high oxidation resistance, significant softness and elasticity, very low bulk modulus (0.05 GPa), and force-driven reversible liquid–gas phase transition. Thus, we expect the MgO-derived GMS can be employed in a variety of applications including high-voltage supercapacitors and as a new type of heat pump based on the force-driven phase transition.</description><subject>Activation energy</subject><subject>Aluminum oxide</subject><subject>Bulk modulus</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Conversion</subject><subject>Density functional theory</subject><subject>Emission analysis</subject><subject>Emission measurements</subject><subject>Graphene</subject><subject>Growth rate</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Hydrochloric acid</subject><subject>Hydrofluoric acid</subject><subject>Magnesium</subject><subject>Magnesium oxide</subject><subject>Methane</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Oxidation resistance</subject><subject>Phase transitions</subject><subject>Reaction mechanisms</subject><subject>Softness</subject><subject>Superconductors (materials)</subject><subject>Vapor phases</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkN9LwzAQx4MoOOZe_AsCvgnVpE3z43HMHxMGPjjxsaRp0mWsTU1Ssf-9GRM97riD-_C94wvANUZ3GBXi_gFvlygvcro-A7MclShjRNDzv5nzS7AIYY9ScISoEDPw8Tb1caeDDdAZ2Ho57HSvYaeDC4PrWw2_rIRKRnmYolVpEXcyAY1WrhtcsNG6HqbsZNsnmbGD7ts2-gpcGHkIevHb5-D96XG7Wmeb1-eX1XKTqVzgmNFG1JwQygijiKuCiZJgxrFiopFcGKMk4YLUNcbaaM45xelxw4mkWDZlWczBzUl38O5z1CFWezf6Pp2s8pKUgh0rUbcnSnkXgtemGrztpJ8qjKqjd9W_d8UPMuRg-A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Sunahiro, Shogo</creator><creator>Nomura, Keita</creator><creator>Goto, Shunsuke</creator><creator>Kanamaru, Kazuya</creator><creator>Tang, Rui</creator><creator>Yamamoto, Masanori</creator><creator>Yoshii, Takeharu</creator><creator>N. Kondo, Junko</creator><creator>Zhao, Qi</creator><creator>Ghulam Nabi, Azeem</creator><creator>Crespo-Otero, Rachel</creator><creator>Di Tommaso, Devis</creator><creator>Kyotani, Takashi</creator><creator>Nishihara, Hirotomo</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8725-5350</orcidid><orcidid>https://orcid.org/0000-0002-0126-2059</orcidid><orcidid>https://orcid.org/0000-0003-1825-5776</orcidid><orcidid>https://orcid.org/0000-0002-1869-6021</orcidid><orcidid>https://orcid.org/0000-0002-7940-1266</orcidid><orcidid>https://orcid.org/0000-0002-4485-4468</orcidid><orcidid>https://orcid.org/0000-0001-6003-3048</orcidid><orcidid>https://orcid.org/0000-0003-4497-4248</orcidid><orcidid>https://orcid.org/0000-0001-8473-7015</orcidid></search><sort><creationdate>20210101</creationdate><title>Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide</title><author>Sunahiro, Shogo ; Nomura, Keita ; Goto, Shunsuke ; Kanamaru, Kazuya ; Tang, Rui ; Yamamoto, Masanori ; Yoshii, Takeharu ; N. Kondo, Junko ; Zhao, Qi ; Ghulam Nabi, Azeem ; Crespo-Otero, Rachel ; Di Tommaso, Devis ; Kyotani, Takashi ; Nishihara, Hirotomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6d9b8446747608c379541781c79da89ffca4894bb11efe88861006f84a61ad553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activation energy</topic><topic>Aluminum oxide</topic><topic>Bulk modulus</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Conversion</topic><topic>Density functional theory</topic><topic>Emission analysis</topic><topic>Emission measurements</topic><topic>Graphene</topic><topic>Growth rate</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Hydrochloric acid</topic><topic>Hydrofluoric acid</topic><topic>Magnesium</topic><topic>Magnesium oxide</topic><topic>Methane</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Oxidation resistance</topic><topic>Phase transitions</topic><topic>Reaction mechanisms</topic><topic>Softness</topic><topic>Superconductors (materials)</topic><topic>Vapor phases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sunahiro, Shogo</creatorcontrib><creatorcontrib>Nomura, Keita</creatorcontrib><creatorcontrib>Goto, Shunsuke</creatorcontrib><creatorcontrib>Kanamaru, Kazuya</creatorcontrib><creatorcontrib>Tang, Rui</creatorcontrib><creatorcontrib>Yamamoto, Masanori</creatorcontrib><creatorcontrib>Yoshii, Takeharu</creatorcontrib><creatorcontrib>N. Kondo, Junko</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><creatorcontrib>Ghulam Nabi, Azeem</creatorcontrib><creatorcontrib>Crespo-Otero, Rachel</creatorcontrib><creatorcontrib>Di Tommaso, Devis</creatorcontrib><creatorcontrib>Kyotani, Takashi</creatorcontrib><creatorcontrib>Nishihara, Hirotomo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sunahiro, Shogo</au><au>Nomura, Keita</au><au>Goto, Shunsuke</au><au>Kanamaru, Kazuya</au><au>Tang, Rui</au><au>Yamamoto, Masanori</au><au>Yoshii, Takeharu</au><au>N. Kondo, Junko</au><au>Zhao, Qi</au><au>Ghulam Nabi, Azeem</au><au>Crespo-Otero, Rachel</au><au>Di Tommaso, Devis</au><au>Kyotani, Takashi</au><au>Nishihara, Hirotomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>25</issue><spage>14296</spage><epage>14308</epage><pages>14296-14308</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Graphene mesosponge (GMS) is a new class of mesoporous carbon consisting mainly of single-layer graphene walls. GMS has traditionally been synthesized via chemical vapour deposition (CVD) of methane onto a template of alumina (Al 2 O 3 ) nanoparticles, which catalyses methane conversion. However, the Al 2 O 3 template needs to be removed using costly and environmentally concerning processes such as hydrofluoric acid or concentrated base. In this work, we examine methane conversion catalysed by magnesium oxide (MgO) and utilized MgO as an alternative catalytic template. In contrast to Al 2 O 3 , a solid acid catalyst, MgO is a solid base catalyst that is also active for methane conversion into graphene sheets but dissolves easily in hydrochloric acid. We have investigated the reaction mechanism using in situ weight measurements and gas-emission analysis during CVD complemented by density functional theory calculations. We found that the pure MgO surface is activated via O-elimination with methane above 778 °C. On the activated MgO surface, methane is converted into a graphene sheet with a relatively low activation energy of 134 kJ mol −1 . Once the first graphene layer is formed, the methane-to-graphene conversion rate decreases and the activation energy increases to 234 kJ mol −1 , which is comparable to that reported in thermal methane-CVD on carbon. As a result of the faster growth rate of the first layer with respect to additional layers, it is easier to obtain single-graphene layers using MgO. The MgO-derived GMS has a unique combination of properties including a high surface area, developed mesopores, high oxidation resistance, significant softness and elasticity, very low bulk modulus (0.05 GPa), and force-driven reversible liquid–gas phase transition. Thus, we expect the MgO-derived GMS can be employed in a variety of applications including high-voltage supercapacitors and as a new type of heat pump based on the force-driven phase transition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D1TA02326H</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8725-5350</orcidid><orcidid>https://orcid.org/0000-0002-0126-2059</orcidid><orcidid>https://orcid.org/0000-0003-1825-5776</orcidid><orcidid>https://orcid.org/0000-0002-1869-6021</orcidid><orcidid>https://orcid.org/0000-0002-7940-1266</orcidid><orcidid>https://orcid.org/0000-0002-4485-4468</orcidid><orcidid>https://orcid.org/0000-0001-6003-3048</orcidid><orcidid>https://orcid.org/0000-0003-4497-4248</orcidid><orcidid>https://orcid.org/0000-0001-8473-7015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (25), p.14296-14308
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2545974597
source Royal Society Of Chemistry Journals 2008-
subjects Activation energy
Aluminum oxide
Bulk modulus
Carbon
Catalysts
Chemical synthesis
Chemical vapor deposition
Conversion
Density functional theory
Emission analysis
Emission measurements
Graphene
Growth rate
Heat exchangers
Heat pumps
Hydrochloric acid
Hydrofluoric acid
Magnesium
Magnesium oxide
Methane
Nanoparticles
Oxidation
Oxidation resistance
Phase transitions
Reaction mechanisms
Softness
Superconductors (materials)
Vapor phases
title Synthesis of graphene mesosponge via catalytic methane decomposition on magnesium oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20graphene%20mesosponge%20via%20catalytic%20methane%20decomposition%20on%20magnesium%20oxide&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Sunahiro,%20Shogo&rft.date=2021-01-01&rft.volume=9&rft.issue=25&rft.spage=14296&rft.epage=14308&rft.pages=14296-14308&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D1TA02326H&rft_dat=%3Cproquest_cross%3E2545974597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545974597&rft_id=info:pmid/&rfr_iscdi=true