Parameterized Optimization in Uncertain Graphs—A Survey and Some Results

We present a detailed survey of results and two new results on graphical models of uncertainty and associated optimization problems. We focus on two well-studied models, namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present an FPT algorithm parameterized b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithms 2020-01, Vol.13 (1), p.3
Hauptverfasser: Narayanaswamy, N. S., Vijayaragunathan, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 3
container_title Algorithms
container_volume 13
creator Narayanaswamy, N. S.
Vijayaragunathan, R.
description We present a detailed survey of results and two new results on graphical models of uncertainty and associated optimization problems. We focus on two well-studied models, namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present an FPT algorithm parameterized by the product of treewidth and max-degree for maximizing expected coverage in an uncertain graph under the RF model. We then consider the problem of finding the maximal core in a graph, which is known to be polynomial time solvable. We show that the Probabilistic-Core problem is polynomial time solvable in uncertain graphs under the LRO model. On the other hand, under the RF model, we show that the Probabilistic-Core problem is W[1]-hard for the parameter d, where d is the minimum degree of the core. We then design an FPT algorithm for the parameter treewidth.
doi_str_mv 10.3390/a13010003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545911939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545911939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-96ec25a355271ea93b869fac8257359ead0261ec5399b91d77ddd2a9517cabb3</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsL3yDgysVofpqZ3mUp2iqFiq3r4U5yi1M6PyYZoV35ED6hT2KlIq7OtzicAx9jl1LcaA3iFqUWUgihj1hPAkAyGII-_sen7CyEtRCpgVT22OMTeqwoki935Pi8jWVV7jCWTc3Lmr_UlnzEPU08tq_h6-NzxBedf6ctx9rxRVMRf6bQbWI4Zycr3AS6-M0-W97fLcfTZDafPIxHs8QqUDGBlKwyqI1RmSQEXQxTWKEdKpNpA4ROqFSSNRqgAOmyzDmnEIzMLBaF7rOrw2zrm7eOQszXTefr_WOuzMCAlKBh37o-tKxvQvC0yltfVui3uRT5j6n8z5T-BikEW3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545911939</pqid></control><display><type>article</type><title>Parameterized Optimization in Uncertain Graphs—A Survey and Some Results</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Narayanaswamy, N. S. ; Vijayaragunathan, R.</creator><creatorcontrib>Narayanaswamy, N. S. ; Vijayaragunathan, R.</creatorcontrib><description>We present a detailed survey of results and two new results on graphical models of uncertainty and associated optimization problems. We focus on two well-studied models, namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present an FPT algorithm parameterized by the product of treewidth and max-degree for maximizing expected coverage in an uncertain graph under the RF model. We then consider the problem of finding the maximal core in a graph, which is known to be polynomial time solvable. We show that the Probabilistic-Core problem is polynomial time solvable in uncertain graphs under the LRO model. On the other hand, under the RF model, we show that the Probabilistic-Core problem is W[1]-hard for the parameter d, where d is the minimum degree of the core. We then design an FPT algorithm for the parameter treewidth.</description><identifier>ISSN: 1999-4893</identifier><identifier>EISSN: 1999-4893</identifier><identifier>DOI: 10.3390/a13010003</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Graphs ; Mathematical models ; Optimization ; Parameterization ; Parameters ; Polynomials ; Probability distribution ; Proteins ; Random variables ; Semantics ; Social networks</subject><ispartof>Algorithms, 2020-01, Vol.13 (1), p.3</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-96ec25a355271ea93b869fac8257359ead0261ec5399b91d77ddd2a9517cabb3</citedby><cites>FETCH-LOGICAL-c292t-96ec25a355271ea93b869fac8257359ead0261ec5399b91d77ddd2a9517cabb3</cites><orcidid>0000-0002-8771-3921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Narayanaswamy, N. S.</creatorcontrib><creatorcontrib>Vijayaragunathan, R.</creatorcontrib><title>Parameterized Optimization in Uncertain Graphs—A Survey and Some Results</title><title>Algorithms</title><description>We present a detailed survey of results and two new results on graphical models of uncertainty and associated optimization problems. We focus on two well-studied models, namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present an FPT algorithm parameterized by the product of treewidth and max-degree for maximizing expected coverage in an uncertain graph under the RF model. We then consider the problem of finding the maximal core in a graph, which is known to be polynomial time solvable. We show that the Probabilistic-Core problem is polynomial time solvable in uncertain graphs under the LRO model. On the other hand, under the RF model, we show that the Probabilistic-Core problem is W[1]-hard for the parameter d, where d is the minimum degree of the core. We then design an FPT algorithm for the parameter treewidth.</description><subject>Algorithms</subject><subject>Graphs</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Probability distribution</subject><subject>Proteins</subject><subject>Random variables</subject><subject>Semantics</subject><subject>Social networks</subject><issn>1999-4893</issn><issn>1999-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkM1KAzEUhYMoWKsL3yDgysVofpqZ3mUp2iqFiq3r4U5yi1M6PyYZoV35ED6hT2KlIq7OtzicAx9jl1LcaA3iFqUWUgihj1hPAkAyGII-_sen7CyEtRCpgVT22OMTeqwoki935Pi8jWVV7jCWTc3Lmr_UlnzEPU08tq_h6-NzxBedf6ctx9rxRVMRf6bQbWI4Zycr3AS6-M0-W97fLcfTZDafPIxHs8QqUDGBlKwyqI1RmSQEXQxTWKEdKpNpA4ROqFSSNRqgAOmyzDmnEIzMLBaF7rOrw2zrm7eOQszXTefr_WOuzMCAlKBh37o-tKxvQvC0yltfVui3uRT5j6n8z5T-BikEW3s</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Narayanaswamy, N. S.</creator><creator>Vijayaragunathan, R.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8771-3921</orcidid></search><sort><creationdate>20200101</creationdate><title>Parameterized Optimization in Uncertain Graphs—A Survey and Some Results</title><author>Narayanaswamy, N. S. ; Vijayaragunathan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-96ec25a355271ea93b869fac8257359ead0261ec5399b91d77ddd2a9517cabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Graphs</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Probability distribution</topic><topic>Proteins</topic><topic>Random variables</topic><topic>Semantics</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayanaswamy, N. S.</creatorcontrib><creatorcontrib>Vijayaragunathan, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narayanaswamy, N. S.</au><au>Vijayaragunathan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameterized Optimization in Uncertain Graphs—A Survey and Some Results</atitle><jtitle>Algorithms</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>3</spage><pages>3-</pages><issn>1999-4893</issn><eissn>1999-4893</eissn><abstract>We present a detailed survey of results and two new results on graphical models of uncertainty and associated optimization problems. We focus on two well-studied models, namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present an FPT algorithm parameterized by the product of treewidth and max-degree for maximizing expected coverage in an uncertain graph under the RF model. We then consider the problem of finding the maximal core in a graph, which is known to be polynomial time solvable. We show that the Probabilistic-Core problem is polynomial time solvable in uncertain graphs under the LRO model. On the other hand, under the RF model, we show that the Probabilistic-Core problem is W[1]-hard for the parameter d, where d is the minimum degree of the core. We then design an FPT algorithm for the parameter treewidth.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/a13010003</doi><orcidid>https://orcid.org/0000-0002-8771-3921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1999-4893
ispartof Algorithms, 2020-01, Vol.13 (1), p.3
issn 1999-4893
1999-4893
language eng
recordid cdi_proquest_journals_2545911939
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Graphs
Mathematical models
Optimization
Parameterization
Parameters
Polynomials
Probability distribution
Proteins
Random variables
Semantics
Social networks
title Parameterized Optimization in Uncertain Graphs—A Survey and Some Results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameterized%20Optimization%20in%20Uncertain%20Graphs%E2%80%94A%20Survey%20and%20Some%20Results&rft.jtitle=Algorithms&rft.au=Narayanaswamy,%20N.%20S.&rft.date=2020-01-01&rft.volume=13&rft.issue=1&rft.spage=3&rft.pages=3-&rft.issn=1999-4893&rft.eissn=1999-4893&rft_id=info:doi/10.3390/a13010003&rft_dat=%3Cproquest_cross%3E2545911939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545911939&rft_id=info:pmid/&rfr_iscdi=true