Parameterized Optimization in Uncertain Graphs—A Survey and Some Results
We present a detailed survey of results and two new results on graphical models of uncertainty and associated optimization problems. We focus on two well-studied models, namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present an FPT algorithm parameterized b...
Gespeichert in:
Veröffentlicht in: | Algorithms 2020-01, Vol.13 (1), p.3 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Algorithms |
container_volume | 13 |
creator | Narayanaswamy, N. S. Vijayaragunathan, R. |
description | We present a detailed survey of results and two new results on graphical models of uncertainty and associated optimization problems. We focus on two well-studied models, namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present an FPT algorithm parameterized by the product of treewidth and max-degree for maximizing expected coverage in an uncertain graph under the RF model. We then consider the problem of finding the maximal core in a graph, which is known to be polynomial time solvable. We show that the Probabilistic-Core problem is polynomial time solvable in uncertain graphs under the LRO model. On the other hand, under the RF model, we show that the Probabilistic-Core problem is W[1]-hard for the parameter d, where d is the minimum degree of the core. We then design an FPT algorithm for the parameter treewidth. |
doi_str_mv | 10.3390/a13010003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545911939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545911939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-96ec25a355271ea93b869fac8257359ead0261ec5399b91d77ddd2a9517cabb3</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWKsL3yDgysVofpqZ3mUp2iqFiq3r4U5yi1M6PyYZoV35ED6hT2KlIq7OtzicAx9jl1LcaA3iFqUWUgihj1hPAkAyGII-_sen7CyEtRCpgVT22OMTeqwoki935Pi8jWVV7jCWTc3Lmr_UlnzEPU08tq_h6-NzxBedf6ctx9rxRVMRf6bQbWI4Zycr3AS6-M0-W97fLcfTZDafPIxHs8QqUDGBlKwyqI1RmSQEXQxTWKEdKpNpA4ROqFSSNRqgAOmyzDmnEIzMLBaF7rOrw2zrm7eOQszXTefr_WOuzMCAlKBh37o-tKxvQvC0yltfVui3uRT5j6n8z5T-BikEW3s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545911939</pqid></control><display><type>article</type><title>Parameterized Optimization in Uncertain Graphs—A Survey and Some Results</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Narayanaswamy, N. S. ; Vijayaragunathan, R.</creator><creatorcontrib>Narayanaswamy, N. S. ; Vijayaragunathan, R.</creatorcontrib><description>We present a detailed survey of results and two new results on graphical models of uncertainty and associated optimization problems. We focus on two well-studied models, namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present an FPT algorithm parameterized by the product of treewidth and max-degree for maximizing expected coverage in an uncertain graph under the RF model. We then consider the problem of finding the maximal core in a graph, which is known to be polynomial time solvable. We show that the Probabilistic-Core problem is polynomial time solvable in uncertain graphs under the LRO model. On the other hand, under the RF model, we show that the Probabilistic-Core problem is W[1]-hard for the parameter d, where d is the minimum degree of the core. We then design an FPT algorithm for the parameter treewidth.</description><identifier>ISSN: 1999-4893</identifier><identifier>EISSN: 1999-4893</identifier><identifier>DOI: 10.3390/a13010003</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Graphs ; Mathematical models ; Optimization ; Parameterization ; Parameters ; Polynomials ; Probability distribution ; Proteins ; Random variables ; Semantics ; Social networks</subject><ispartof>Algorithms, 2020-01, Vol.13 (1), p.3</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-96ec25a355271ea93b869fac8257359ead0261ec5399b91d77ddd2a9517cabb3</citedby><cites>FETCH-LOGICAL-c292t-96ec25a355271ea93b869fac8257359ead0261ec5399b91d77ddd2a9517cabb3</cites><orcidid>0000-0002-8771-3921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids></links><search><creatorcontrib>Narayanaswamy, N. S.</creatorcontrib><creatorcontrib>Vijayaragunathan, R.</creatorcontrib><title>Parameterized Optimization in Uncertain Graphs—A Survey and Some Results</title><title>Algorithms</title><description>We present a detailed survey of results and two new results on graphical models of uncertainty and associated optimization problems. We focus on two well-studied models, namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present an FPT algorithm parameterized by the product of treewidth and max-degree for maximizing expected coverage in an uncertain graph under the RF model. We then consider the problem of finding the maximal core in a graph, which is known to be polynomial time solvable. We show that the Probabilistic-Core problem is polynomial time solvable in uncertain graphs under the LRO model. On the other hand, under the RF model, we show that the Probabilistic-Core problem is W[1]-hard for the parameter d, where d is the minimum degree of the core. We then design an FPT algorithm for the parameter treewidth.</description><subject>Algorithms</subject><subject>Graphs</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Probability distribution</subject><subject>Proteins</subject><subject>Random variables</subject><subject>Semantics</subject><subject>Social networks</subject><issn>1999-4893</issn><issn>1999-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkM1KAzEUhYMoWKsL3yDgysVofpqZ3mUp2iqFiq3r4U5yi1M6PyYZoV35ED6hT2KlIq7OtzicAx9jl1LcaA3iFqUWUgihj1hPAkAyGII-_sen7CyEtRCpgVT22OMTeqwoki935Pi8jWVV7jCWTc3Lmr_UlnzEPU08tq_h6-NzxBedf6ctx9rxRVMRf6bQbWI4Zycr3AS6-M0-W97fLcfTZDafPIxHs8QqUDGBlKwyqI1RmSQEXQxTWKEdKpNpA4ROqFSSNRqgAOmyzDmnEIzMLBaF7rOrw2zrm7eOQszXTefr_WOuzMCAlKBh37o-tKxvQvC0yltfVui3uRT5j6n8z5T-BikEW3s</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Narayanaswamy, N. S.</creator><creator>Vijayaragunathan, R.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8771-3921</orcidid></search><sort><creationdate>20200101</creationdate><title>Parameterized Optimization in Uncertain Graphs—A Survey and Some Results</title><author>Narayanaswamy, N. S. ; Vijayaragunathan, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-96ec25a355271ea93b869fac8257359ead0261ec5399b91d77ddd2a9517cabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Graphs</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Probability distribution</topic><topic>Proteins</topic><topic>Random variables</topic><topic>Semantics</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayanaswamy, N. S.</creatorcontrib><creatorcontrib>Vijayaragunathan, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narayanaswamy, N. S.</au><au>Vijayaragunathan, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameterized Optimization in Uncertain Graphs—A Survey and Some Results</atitle><jtitle>Algorithms</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>13</volume><issue>1</issue><spage>3</spage><pages>3-</pages><issn>1999-4893</issn><eissn>1999-4893</eissn><abstract>We present a detailed survey of results and two new results on graphical models of uncertainty and associated optimization problems. We focus on two well-studied models, namely, the Random Failure (RF) model and the Linear Reliability Ordering (LRO) model. We present an FPT algorithm parameterized by the product of treewidth and max-degree for maximizing expected coverage in an uncertain graph under the RF model. We then consider the problem of finding the maximal core in a graph, which is known to be polynomial time solvable. We show that the Probabilistic-Core problem is polynomial time solvable in uncertain graphs under the LRO model. On the other hand, under the RF model, we show that the Probabilistic-Core problem is W[1]-hard for the parameter d, where d is the minimum degree of the core. We then design an FPT algorithm for the parameter treewidth.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/a13010003</doi><orcidid>https://orcid.org/0000-0002-8771-3921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1999-4893 |
ispartof | Algorithms, 2020-01, Vol.13 (1), p.3 |
issn | 1999-4893 1999-4893 |
language | eng |
recordid | cdi_proquest_journals_2545911939 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Graphs Mathematical models Optimization Parameterization Parameters Polynomials Probability distribution Proteins Random variables Semantics Social networks |
title | Parameterized Optimization in Uncertain Graphs—A Survey and Some Results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A04%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameterized%20Optimization%20in%20Uncertain%20Graphs%E2%80%94A%20Survey%20and%20Some%20Results&rft.jtitle=Algorithms&rft.au=Narayanaswamy,%20N.%20S.&rft.date=2020-01-01&rft.volume=13&rft.issue=1&rft.spage=3&rft.pages=3-&rft.issn=1999-4893&rft.eissn=1999-4893&rft_id=info:doi/10.3390/a13010003&rft_dat=%3Cproquest_cross%3E2545911939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545911939&rft_id=info:pmid/&rfr_iscdi=true |