Interannual variability of summertime eddy-induced heat transport in the Western South China Sea and its formation mechanism

The interannual variability of summertime eddy-induced heat transport (EHT) in the western South China Sea (WSCS) is investigated based on the downgradient eddy diffusivity method and explored its formation mechanism. Estimations of long-term mean EHT and its monthly evolution reveal that the larges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2021-07, Vol.57 (1-2), p.451-468
Hauptverfasser: Gonaduwage, Lasitha Perera, Chen, Gengxin, Priyadarshana, Tilak, Wang, Dongxiao, Yao, Jinglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 1-2
container_start_page 451
container_title Climate dynamics
container_volume 57
creator Gonaduwage, Lasitha Perera
Chen, Gengxin
Priyadarshana, Tilak
Wang, Dongxiao
Yao, Jinglong
description The interannual variability of summertime eddy-induced heat transport (EHT) in the western South China Sea (WSCS) is investigated based on the downgradient eddy diffusivity method and explored its formation mechanism. Estimations of long-term mean EHT and its monthly evolution reveal that the largest EHT in the SCS occurs in the WSCS region during the summer. In the WSCS, enhanced EHT and eddy kinetic energy (EKE) levels are simultaneously observed in 1994, 1999, 2002, 2006, 2008, 2009, 2012, 2014 whereas the lower EHT and EKE levels are observed in 1995, 2000, 2001, 2003, 2004, 2007, 2010, 2015, 2017 during JAS (July, August and September) months. Analysis of the Simple Ocean Data Assimilation, version 3.3.1 (SODAv3) data along 110.75° E reveals a strong surface intensification of the summertime eastward jet (SEJ) in the EHT-strong years than the EHT-weak years. Linear stability analysis conducted by adopting a 2 ½-layer reduced gravity model shows that the increased EHT in EHT-strong years is due to the enhanced baroclinic instability caused by the strong vertical shear developed through the surface-intensification of SEJ. The cause for the interannually varying vertical shear can be sought in the interannually varying meridional temperature gradient which is influenced by the combined forcing of the meridional Ekman flux convergence, meridional geostrophic flux convergence, and convergence of the latitudinally dependent surface heat flux forcing. It is also found that the interannual variations of EHT in the SCS are partially influenced by the local wind stress curl and remote forcing from the eastern boundary.
doi_str_mv 10.1007/s00382-021-05719-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2545811602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A666743086</galeid><sourcerecordid>A666743086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-4e4cdf4e8fa66dc8f4c19cde50000739a481b94829257acf745dc3f733c8f9a73</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMo2I7-AVcBQXBRY15VqVoOjY-GAcFWXIZMctOVoSppk9Rggz_etCVob0wWgct37s25B6GXlFxTQuTbTAjvWUMYbUgr6dDIR2hDBa-lfhCP0YYMnDSyle1T9Czne0Ko6CTboJ-7UCDpEBY94QedvL7zky8nHB3OyzxDKn4GDNaeGh_sYsDiEXTBpYryMaaCfcBlBPwNcu0U8D4uZcTb0QeN96CxDhb7krGLadbFx4BnMKMOPs_P0ROnpwwv_rxX6Ov7d1-2H5vbTx9225vbxgjGSyNAGOsE9E53nTW9E4YOxkJL6pF80KKnd4Po2cBaqY2TorWGO8l5ZQct-RV6tfY9pvh9qf9U93FJoY5UrBVtT2lHWKWuV-qgJ1A-uFg9mnotzN7EAM7X-k3XdVJw0ndV8OZCUJkCP8pBLzmr3f7zJfv6H7ZucCpjjtNyXki-BNkKmhRzTuDUMflZp5OiRJ2zVmvWqmatfmetzgb5KsoVDgdIfw3-R_ULN1esXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545811602</pqid></control><display><type>article</type><title>Interannual variability of summertime eddy-induced heat transport in the Western South China Sea and its formation mechanism</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gonaduwage, Lasitha Perera ; Chen, Gengxin ; Priyadarshana, Tilak ; Wang, Dongxiao ; Yao, Jinglong</creator><creatorcontrib>Gonaduwage, Lasitha Perera ; Chen, Gengxin ; Priyadarshana, Tilak ; Wang, Dongxiao ; Yao, Jinglong</creatorcontrib><description>The interannual variability of summertime eddy-induced heat transport (EHT) in the western South China Sea (WSCS) is investigated based on the downgradient eddy diffusivity method and explored its formation mechanism. Estimations of long-term mean EHT and its monthly evolution reveal that the largest EHT in the SCS occurs in the WSCS region during the summer. In the WSCS, enhanced EHT and eddy kinetic energy (EKE) levels are simultaneously observed in 1994, 1999, 2002, 2006, 2008, 2009, 2012, 2014 whereas the lower EHT and EKE levels are observed in 1995, 2000, 2001, 2003, 2004, 2007, 2010, 2015, 2017 during JAS (July, August and September) months. Analysis of the Simple Ocean Data Assimilation, version 3.3.1 (SODAv3) data along 110.75° E reveals a strong surface intensification of the summertime eastward jet (SEJ) in the EHT-strong years than the EHT-weak years. Linear stability analysis conducted by adopting a 2 ½-layer reduced gravity model shows that the increased EHT in EHT-strong years is due to the enhanced baroclinic instability caused by the strong vertical shear developed through the surface-intensification of SEJ. The cause for the interannually varying vertical shear can be sought in the interannually varying meridional temperature gradient which is influenced by the combined forcing of the meridional Ekman flux convergence, meridional geostrophic flux convergence, and convergence of the latitudinally dependent surface heat flux forcing. It is also found that the interannual variations of EHT in the SCS are partially influenced by the local wind stress curl and remote forcing from the eastern boundary.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-021-05719-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amplification ; Annual variations ; Baroclinic instability ; Climatology ; Convergence ; Data assimilation ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Eddies ; Eddy diffusion ; Eddy diffusivity ; Eddy kinetic energy ; Environmental aspects ; Fluctuations ; Geophysics/Geodesy ; Gravity ; Heat ; Heat flux ; Heat transfer ; Heat transport ; Induction heating ; Interannual variability ; Interannual variations ; Kinetic energy ; Local winds ; Microgravity ; Ocean circulation ; Ocean temperature ; Oceanic analysis ; Oceanography ; Stability ; Stability analysis ; Summer ; Temperature gradients ; Variability ; Vertical shear ; Wind stress ; Wind stress curl</subject><ispartof>Climate dynamics, 2021-07, Vol.57 (1-2), p.451-468</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-4e4cdf4e8fa66dc8f4c19cde50000739a481b94829257acf745dc3f733c8f9a73</citedby><cites>FETCH-LOGICAL-c423t-4e4cdf4e8fa66dc8f4c19cde50000739a481b94829257acf745dc3f733c8f9a73</cites><orcidid>0000-0001-8778-2188 ; 0000-0003-3099-6227 ; 0000-0002-9156-798X ; 0000-0002-6227-7334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-021-05719-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-021-05719-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gonaduwage, Lasitha Perera</creatorcontrib><creatorcontrib>Chen, Gengxin</creatorcontrib><creatorcontrib>Priyadarshana, Tilak</creatorcontrib><creatorcontrib>Wang, Dongxiao</creatorcontrib><creatorcontrib>Yao, Jinglong</creatorcontrib><title>Interannual variability of summertime eddy-induced heat transport in the Western South China Sea and its formation mechanism</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>The interannual variability of summertime eddy-induced heat transport (EHT) in the western South China Sea (WSCS) is investigated based on the downgradient eddy diffusivity method and explored its formation mechanism. Estimations of long-term mean EHT and its monthly evolution reveal that the largest EHT in the SCS occurs in the WSCS region during the summer. In the WSCS, enhanced EHT and eddy kinetic energy (EKE) levels are simultaneously observed in 1994, 1999, 2002, 2006, 2008, 2009, 2012, 2014 whereas the lower EHT and EKE levels are observed in 1995, 2000, 2001, 2003, 2004, 2007, 2010, 2015, 2017 during JAS (July, August and September) months. Analysis of the Simple Ocean Data Assimilation, version 3.3.1 (SODAv3) data along 110.75° E reveals a strong surface intensification of the summertime eastward jet (SEJ) in the EHT-strong years than the EHT-weak years. Linear stability analysis conducted by adopting a 2 ½-layer reduced gravity model shows that the increased EHT in EHT-strong years is due to the enhanced baroclinic instability caused by the strong vertical shear developed through the surface-intensification of SEJ. The cause for the interannually varying vertical shear can be sought in the interannually varying meridional temperature gradient which is influenced by the combined forcing of the meridional Ekman flux convergence, meridional geostrophic flux convergence, and convergence of the latitudinally dependent surface heat flux forcing. It is also found that the interannual variations of EHT in the SCS are partially influenced by the local wind stress curl and remote forcing from the eastern boundary.</description><subject>Amplification</subject><subject>Annual variations</subject><subject>Baroclinic instability</subject><subject>Climatology</subject><subject>Convergence</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eddies</subject><subject>Eddy diffusion</subject><subject>Eddy diffusivity</subject><subject>Eddy kinetic energy</subject><subject>Environmental aspects</subject><subject>Fluctuations</subject><subject>Geophysics/Geodesy</subject><subject>Gravity</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transport</subject><subject>Induction heating</subject><subject>Interannual variability</subject><subject>Interannual variations</subject><subject>Kinetic energy</subject><subject>Local winds</subject><subject>Microgravity</subject><subject>Ocean circulation</subject><subject>Ocean temperature</subject><subject>Oceanic analysis</subject><subject>Oceanography</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Summer</subject><subject>Temperature gradients</subject><subject>Variability</subject><subject>Vertical shear</subject><subject>Wind stress</subject><subject>Wind stress curl</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUuLFDEUhYMo2I7-AVcBQXBRY15VqVoOjY-GAcFWXIZMctOVoSppk9Rggz_etCVob0wWgct37s25B6GXlFxTQuTbTAjvWUMYbUgr6dDIR2hDBa-lfhCP0YYMnDSyle1T9Czne0Ko6CTboJ-7UCDpEBY94QedvL7zky8nHB3OyzxDKn4GDNaeGh_sYsDiEXTBpYryMaaCfcBlBPwNcu0U8D4uZcTb0QeN96CxDhb7krGLadbFx4BnMKMOPs_P0ROnpwwv_rxX6Ov7d1-2H5vbTx9225vbxgjGSyNAGOsE9E53nTW9E4YOxkJL6pF80KKnd4Po2cBaqY2TorWGO8l5ZQct-RV6tfY9pvh9qf9U93FJoY5UrBVtT2lHWKWuV-qgJ1A-uFg9mnotzN7EAM7X-k3XdVJw0ndV8OZCUJkCP8pBLzmr3f7zJfv6H7ZucCpjjtNyXki-BNkKmhRzTuDUMflZp5OiRJ2zVmvWqmatfmetzgb5KsoVDgdIfw3-R_ULN1esXw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Gonaduwage, Lasitha Perera</creator><creator>Chen, Gengxin</creator><creator>Priyadarshana, Tilak</creator><creator>Wang, Dongxiao</creator><creator>Yao, Jinglong</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8778-2188</orcidid><orcidid>https://orcid.org/0000-0003-3099-6227</orcidid><orcidid>https://orcid.org/0000-0002-9156-798X</orcidid><orcidid>https://orcid.org/0000-0002-6227-7334</orcidid></search><sort><creationdate>20210701</creationdate><title>Interannual variability of summertime eddy-induced heat transport in the Western South China Sea and its formation mechanism</title><author>Gonaduwage, Lasitha Perera ; Chen, Gengxin ; Priyadarshana, Tilak ; Wang, Dongxiao ; Yao, Jinglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-4e4cdf4e8fa66dc8f4c19cde50000739a481b94829257acf745dc3f733c8f9a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplification</topic><topic>Annual variations</topic><topic>Baroclinic instability</topic><topic>Climatology</topic><topic>Convergence</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eddies</topic><topic>Eddy diffusion</topic><topic>Eddy diffusivity</topic><topic>Eddy kinetic energy</topic><topic>Environmental aspects</topic><topic>Fluctuations</topic><topic>Geophysics/Geodesy</topic><topic>Gravity</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transport</topic><topic>Induction heating</topic><topic>Interannual variability</topic><topic>Interannual variations</topic><topic>Kinetic energy</topic><topic>Local winds</topic><topic>Microgravity</topic><topic>Ocean circulation</topic><topic>Ocean temperature</topic><topic>Oceanic analysis</topic><topic>Oceanography</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Summer</topic><topic>Temperature gradients</topic><topic>Variability</topic><topic>Vertical shear</topic><topic>Wind stress</topic><topic>Wind stress curl</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonaduwage, Lasitha Perera</creatorcontrib><creatorcontrib>Chen, Gengxin</creatorcontrib><creatorcontrib>Priyadarshana, Tilak</creatorcontrib><creatorcontrib>Wang, Dongxiao</creatorcontrib><creatorcontrib>Yao, Jinglong</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonaduwage, Lasitha Perera</au><au>Chen, Gengxin</au><au>Priyadarshana, Tilak</au><au>Wang, Dongxiao</au><au>Yao, Jinglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interannual variability of summertime eddy-induced heat transport in the Western South China Sea and its formation mechanism</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>57</volume><issue>1-2</issue><spage>451</spage><epage>468</epage><pages>451-468</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>The interannual variability of summertime eddy-induced heat transport (EHT) in the western South China Sea (WSCS) is investigated based on the downgradient eddy diffusivity method and explored its formation mechanism. Estimations of long-term mean EHT and its monthly evolution reveal that the largest EHT in the SCS occurs in the WSCS region during the summer. In the WSCS, enhanced EHT and eddy kinetic energy (EKE) levels are simultaneously observed in 1994, 1999, 2002, 2006, 2008, 2009, 2012, 2014 whereas the lower EHT and EKE levels are observed in 1995, 2000, 2001, 2003, 2004, 2007, 2010, 2015, 2017 during JAS (July, August and September) months. Analysis of the Simple Ocean Data Assimilation, version 3.3.1 (SODAv3) data along 110.75° E reveals a strong surface intensification of the summertime eastward jet (SEJ) in the EHT-strong years than the EHT-weak years. Linear stability analysis conducted by adopting a 2 ½-layer reduced gravity model shows that the increased EHT in EHT-strong years is due to the enhanced baroclinic instability caused by the strong vertical shear developed through the surface-intensification of SEJ. The cause for the interannually varying vertical shear can be sought in the interannually varying meridional temperature gradient which is influenced by the combined forcing of the meridional Ekman flux convergence, meridional geostrophic flux convergence, and convergence of the latitudinally dependent surface heat flux forcing. It is also found that the interannual variations of EHT in the SCS are partially influenced by the local wind stress curl and remote forcing from the eastern boundary.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-021-05719-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8778-2188</orcidid><orcidid>https://orcid.org/0000-0003-3099-6227</orcidid><orcidid>https://orcid.org/0000-0002-9156-798X</orcidid><orcidid>https://orcid.org/0000-0002-6227-7334</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2021-07, Vol.57 (1-2), p.451-468
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_2545811602
source SpringerLink Journals - AutoHoldings
subjects Amplification
Annual variations
Baroclinic instability
Climatology
Convergence
Data assimilation
Data collection
Earth and Environmental Science
Earth Sciences
Eddies
Eddy diffusion
Eddy diffusivity
Eddy kinetic energy
Environmental aspects
Fluctuations
Geophysics/Geodesy
Gravity
Heat
Heat flux
Heat transfer
Heat transport
Induction heating
Interannual variability
Interannual variations
Kinetic energy
Local winds
Microgravity
Ocean circulation
Ocean temperature
Oceanic analysis
Oceanography
Stability
Stability analysis
Summer
Temperature gradients
Variability
Vertical shear
Wind stress
Wind stress curl
title Interannual variability of summertime eddy-induced heat transport in the Western South China Sea and its formation mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interannual%20variability%20of%20summertime%20eddy-induced%20heat%20transport%20in%20the%20Western%20South%20China%20Sea%20and%20its%20formation%20mechanism&rft.jtitle=Climate%20dynamics&rft.au=Gonaduwage,%20Lasitha%20Perera&rft.date=2021-07-01&rft.volume=57&rft.issue=1-2&rft.spage=451&rft.epage=468&rft.pages=451-468&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-021-05719-7&rft_dat=%3Cgale_proqu%3EA666743086%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545811602&rft_id=info:pmid/&rft_galeid=A666743086&rfr_iscdi=true