Intensified constructed wetlands for the treatment of municipal wastewater: experimental investigation and kinetic modelling

This study reports organics and nutrient removal performances of the intensified constructed wetlands, i.e., tidal flow-based microbial fuel cell (MFC) and tidal flow wetlands that received municipal wastewater. The wetland systems were filled with organic (coco peat, biochar) or waste (Jhama brick,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2021-06, Vol.28 (24), p.30908-30928
Hauptverfasser: Saeed, Tanveer, Miah, Md Jihad, Khan, Tanbir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30928
container_issue 24
container_start_page 30908
container_title Environmental science and pollution research international
container_volume 28
creator Saeed, Tanveer
Miah, Md Jihad
Khan, Tanbir
description This study reports organics and nutrient removal performances of the intensified constructed wetlands, i.e., tidal flow-based microbial fuel cell (MFC) and tidal flow wetlands that received municipal wastewater. The wetland systems were filled with organic (coco peat, biochar) or waste (Jhama brick, steel slag) materials, planted with Phragmites australis or Chrysopogon zizanioides (Vetiver) species, and operated under three flood periods: 8, 16, 24 h. Input ammonia nitrogen (NH 3 –N), total nitrogen (TN), phosphorus (P), chemical oxygen demand (COD), and biochemical oxygen demand (BOD) load across the wetland systems ranged between 3–27, 12–78, 0.1–23, 36–1130, and 11–281 g/m 2 day, respectively; mean removal percentages were 60–83, 74–84, 95–100, 94–98, and 93–97%, respectively, throughout the experimental run. The wetland systems achieved similar organics and P removals; operational and media variation did not influence removal kinetics. All wetland systems achieved the highest TN removal (76–87%) when subjected to 24-h flood period. TN removal performances of waste material–based wetlands were comparable to organic media-based systems. Tidal flow-based MFC wetlands achieved better TN removal than tidal flow wetlands because of supplementary electron production through fuel cell–based organics degradation kinetics. Maximum power production rates across the tidal flow-based MFC wetlands ranged between 53 and 57 mW/m 2 . Monod kinetics–based continuous stirred tank reactor (CSTR) models predicted NH 3 –N, TN, and COD removals (in wetland systems) more accurately. Kinetic models confirmed the influence of substrate (i.e., pollutant) and environmental parameters on pollutant removal routes.
doi_str_mv 10.1007/s11356-021-12700-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545810130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661004574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-564b5873158f504c23808259c67010f2895b74590a7f517821ecea94264a09b83</originalsourceid><addsrcrecordid>eNp9kU9vFCEYh4mxsdvqF_BgSLx4GfvybwBvptHapIkXPROWfWelzjArMK4m_fCybtXEQ0-QvA8_fvAQ8pzBawagLwpjQvUdcNYxrgE684isWM9kp6W1j8kKrJQdE1KekrNSbgE4WK6fkFMhlJWqZytyd50qphKHiBsa5lRqXkJt-z3W0adNocOcaf2CtGb0dcJU6TzQaUkxxJ0f6d6XintfMb-h-GOHOR6YNojpO5Yat77GOdEWRb_GhDUGOs0bHMeYtk_JyeDHgs_u13Py-f27T5cfupuPV9eXb2-6IMHUTvVyrYwWTJlBgQxcGDBc2dBrYDBwY9VaS2XB60ExbTjDgN5K3ksPdm3EOXl1zN3l-dvSWrkpltA6-ITzUhzv-_ahUmnZ0Jf_obfzklNr57iSyjBgAhrFj1TIcykZB7dr7_b5p2PgDm7c0Y1rbtxvN-7Q4sV99LKecPP3yB8ZDRBHoLRR2mL-d_cDsb8ApPWaaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545810130</pqid></control><display><type>article</type><title>Intensified constructed wetlands for the treatment of municipal wastewater: experimental investigation and kinetic modelling</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Saeed, Tanveer ; Miah, Md Jihad ; Khan, Tanbir</creator><creatorcontrib>Saeed, Tanveer ; Miah, Md Jihad ; Khan, Tanbir</creatorcontrib><description>This study reports organics and nutrient removal performances of the intensified constructed wetlands, i.e., tidal flow-based microbial fuel cell (MFC) and tidal flow wetlands that received municipal wastewater. The wetland systems were filled with organic (coco peat, biochar) or waste (Jhama brick, steel slag) materials, planted with Phragmites australis or Chrysopogon zizanioides (Vetiver) species, and operated under three flood periods: 8, 16, 24 h. Input ammonia nitrogen (NH 3 –N), total nitrogen (TN), phosphorus (P), chemical oxygen demand (COD), and biochemical oxygen demand (BOD) load across the wetland systems ranged between 3–27, 12–78, 0.1–23, 36–1130, and 11–281 g/m 2 day, respectively; mean removal percentages were 60–83, 74–84, 95–100, 94–98, and 93–97%, respectively, throughout the experimental run. The wetland systems achieved similar organics and P removals; operational and media variation did not influence removal kinetics. All wetland systems achieved the highest TN removal (76–87%) when subjected to 24-h flood period. TN removal performances of waste material–based wetlands were comparable to organic media-based systems. Tidal flow-based MFC wetlands achieved better TN removal than tidal flow wetlands because of supplementary electron production through fuel cell–based organics degradation kinetics. Maximum power production rates across the tidal flow-based MFC wetlands ranged between 53 and 57 mW/m 2 . Monod kinetics–based continuous stirred tank reactor (CSTR) models predicted NH 3 –N, TN, and COD removals (in wetland systems) more accurately. Kinetic models confirmed the influence of substrate (i.e., pollutant) and environmental parameters on pollutant removal routes.</description><identifier>ISSN: 0944-1344</identifier><identifier>EISSN: 1614-7499</identifier><identifier>DOI: 10.1007/s11356-021-12700-8</identifier><identifier>PMID: 33594561</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ammonia ; ammonium nitrogen ; Aquatic plants ; Aquatic Pollution ; Artificial wetlands ; Atmospheric Protection/Air Quality Control/Air Pollution ; biochar ; Biochemical fuel cells ; Biochemical oxygen demand ; Biodegradation ; Biological Oxygen Demand Analysis ; bricks ; Charcoal ; Chemical oxygen demand ; Chrysopogon zizanioides ; Continuously stirred tank reactors ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Health ; Environmental science ; Fuel cells ; Fuel technology ; fuels ; Kinetics ; Maximum power ; microbial fuel cells ; Microorganisms ; Monod kinetics ; Municipal wastewater ; Nitrogen ; Nitrogen - analysis ; Nuclear fuels ; Nutrient removal ; Peat ; Phosphorus ; Phragmites australis ; Pollutant removal ; Pollutants ; pollution control ; power generation ; Research Article ; Slag ; slags ; species ; steel ; Substrates ; Tidal flow ; Tidal power ; total nitrogen ; Waste Disposal, Fluid ; Waste materials ; Waste Water Technology ; Wastewater ; Wastewater treatment ; Water Management ; Water Pollution Control ; Wetlands</subject><ispartof>Environmental science and pollution research international, 2021-06, Vol.28 (24), p.30908-30928</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-564b5873158f504c23808259c67010f2895b74590a7f517821ecea94264a09b83</citedby><cites>FETCH-LOGICAL-c408t-564b5873158f504c23808259c67010f2895b74590a7f517821ecea94264a09b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11356-021-12700-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11356-021-12700-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33594561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saeed, Tanveer</creatorcontrib><creatorcontrib>Miah, Md Jihad</creatorcontrib><creatorcontrib>Khan, Tanbir</creatorcontrib><title>Intensified constructed wetlands for the treatment of municipal wastewater: experimental investigation and kinetic modelling</title><title>Environmental science and pollution research international</title><addtitle>Environ Sci Pollut Res</addtitle><addtitle>Environ Sci Pollut Res Int</addtitle><description>This study reports organics and nutrient removal performances of the intensified constructed wetlands, i.e., tidal flow-based microbial fuel cell (MFC) and tidal flow wetlands that received municipal wastewater. The wetland systems were filled with organic (coco peat, biochar) or waste (Jhama brick, steel slag) materials, planted with Phragmites australis or Chrysopogon zizanioides (Vetiver) species, and operated under three flood periods: 8, 16, 24 h. Input ammonia nitrogen (NH 3 –N), total nitrogen (TN), phosphorus (P), chemical oxygen demand (COD), and biochemical oxygen demand (BOD) load across the wetland systems ranged between 3–27, 12–78, 0.1–23, 36–1130, and 11–281 g/m 2 day, respectively; mean removal percentages were 60–83, 74–84, 95–100, 94–98, and 93–97%, respectively, throughout the experimental run. The wetland systems achieved similar organics and P removals; operational and media variation did not influence removal kinetics. All wetland systems achieved the highest TN removal (76–87%) when subjected to 24-h flood period. TN removal performances of waste material–based wetlands were comparable to organic media-based systems. Tidal flow-based MFC wetlands achieved better TN removal than tidal flow wetlands because of supplementary electron production through fuel cell–based organics degradation kinetics. Maximum power production rates across the tidal flow-based MFC wetlands ranged between 53 and 57 mW/m 2 . Monod kinetics–based continuous stirred tank reactor (CSTR) models predicted NH 3 –N, TN, and COD removals (in wetland systems) more accurately. Kinetic models confirmed the influence of substrate (i.e., pollutant) and environmental parameters on pollutant removal routes.</description><subject>Ammonia</subject><subject>ammonium nitrogen</subject><subject>Aquatic plants</subject><subject>Aquatic Pollution</subject><subject>Artificial wetlands</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>biochar</subject><subject>Biochemical fuel cells</subject><subject>Biochemical oxygen demand</subject><subject>Biodegradation</subject><subject>Biological Oxygen Demand Analysis</subject><subject>bricks</subject><subject>Charcoal</subject><subject>Chemical oxygen demand</subject><subject>Chrysopogon zizanioides</subject><subject>Continuously stirred tank reactors</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Environmental science</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>fuels</subject><subject>Kinetics</subject><subject>Maximum power</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>Monod kinetics</subject><subject>Municipal wastewater</subject><subject>Nitrogen</subject><subject>Nitrogen - analysis</subject><subject>Nuclear fuels</subject><subject>Nutrient removal</subject><subject>Peat</subject><subject>Phosphorus</subject><subject>Phragmites australis</subject><subject>Pollutant removal</subject><subject>Pollutants</subject><subject>pollution control</subject><subject>power generation</subject><subject>Research Article</subject><subject>Slag</subject><subject>slags</subject><subject>species</subject><subject>steel</subject><subject>Substrates</subject><subject>Tidal flow</subject><subject>Tidal power</subject><subject>total nitrogen</subject><subject>Waste Disposal, Fluid</subject><subject>Waste materials</subject><subject>Waste Water Technology</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Wetlands</subject><issn>0944-1344</issn><issn>1614-7499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9vFCEYh4mxsdvqF_BgSLx4GfvybwBvptHapIkXPROWfWelzjArMK4m_fCybtXEQ0-QvA8_fvAQ8pzBawagLwpjQvUdcNYxrgE684isWM9kp6W1j8kKrJQdE1KekrNSbgE4WK6fkFMhlJWqZytyd50qphKHiBsa5lRqXkJt-z3W0adNocOcaf2CtGb0dcJU6TzQaUkxxJ0f6d6XintfMb-h-GOHOR6YNojpO5Yat77GOdEWRb_GhDUGOs0bHMeYtk_JyeDHgs_u13Py-f27T5cfupuPV9eXb2-6IMHUTvVyrYwWTJlBgQxcGDBc2dBrYDBwY9VaS2XB60ExbTjDgN5K3ksPdm3EOXl1zN3l-dvSWrkpltA6-ITzUhzv-_ahUmnZ0Jf_obfzklNr57iSyjBgAhrFj1TIcykZB7dr7_b5p2PgDm7c0Y1rbtxvN-7Q4sV99LKecPP3yB8ZDRBHoLRR2mL-d_cDsb8ApPWaaw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Saeed, Tanveer</creator><creator>Miah, Md Jihad</creator><creator>Khan, Tanbir</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20210601</creationdate><title>Intensified constructed wetlands for the treatment of municipal wastewater: experimental investigation and kinetic modelling</title><author>Saeed, Tanveer ; Miah, Md Jihad ; Khan, Tanbir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-564b5873158f504c23808259c67010f2895b74590a7f517821ecea94264a09b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>ammonium nitrogen</topic><topic>Aquatic plants</topic><topic>Aquatic Pollution</topic><topic>Artificial wetlands</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>biochar</topic><topic>Biochemical fuel cells</topic><topic>Biochemical oxygen demand</topic><topic>Biodegradation</topic><topic>Biological Oxygen Demand Analysis</topic><topic>bricks</topic><topic>Charcoal</topic><topic>Chemical oxygen demand</topic><topic>Chrysopogon zizanioides</topic><topic>Continuously stirred tank reactors</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Environmental science</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>fuels</topic><topic>Kinetics</topic><topic>Maximum power</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>Monod kinetics</topic><topic>Municipal wastewater</topic><topic>Nitrogen</topic><topic>Nitrogen - analysis</topic><topic>Nuclear fuels</topic><topic>Nutrient removal</topic><topic>Peat</topic><topic>Phosphorus</topic><topic>Phragmites australis</topic><topic>Pollutant removal</topic><topic>Pollutants</topic><topic>pollution control</topic><topic>power generation</topic><topic>Research Article</topic><topic>Slag</topic><topic>slags</topic><topic>species</topic><topic>steel</topic><topic>Substrates</topic><topic>Tidal flow</topic><topic>Tidal power</topic><topic>total nitrogen</topic><topic>Waste Disposal, Fluid</topic><topic>Waste materials</topic><topic>Waste Water Technology</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saeed, Tanveer</creatorcontrib><creatorcontrib>Miah, Md Jihad</creatorcontrib><creatorcontrib>Khan, Tanbir</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Environmental science and pollution research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saeed, Tanveer</au><au>Miah, Md Jihad</au><au>Khan, Tanbir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intensified constructed wetlands for the treatment of municipal wastewater: experimental investigation and kinetic modelling</atitle><jtitle>Environmental science and pollution research international</jtitle><stitle>Environ Sci Pollut Res</stitle><addtitle>Environ Sci Pollut Res Int</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>28</volume><issue>24</issue><spage>30908</spage><epage>30928</epage><pages>30908-30928</pages><issn>0944-1344</issn><eissn>1614-7499</eissn><abstract>This study reports organics and nutrient removal performances of the intensified constructed wetlands, i.e., tidal flow-based microbial fuel cell (MFC) and tidal flow wetlands that received municipal wastewater. The wetland systems were filled with organic (coco peat, biochar) or waste (Jhama brick, steel slag) materials, planted with Phragmites australis or Chrysopogon zizanioides (Vetiver) species, and operated under three flood periods: 8, 16, 24 h. Input ammonia nitrogen (NH 3 –N), total nitrogen (TN), phosphorus (P), chemical oxygen demand (COD), and biochemical oxygen demand (BOD) load across the wetland systems ranged between 3–27, 12–78, 0.1–23, 36–1130, and 11–281 g/m 2 day, respectively; mean removal percentages were 60–83, 74–84, 95–100, 94–98, and 93–97%, respectively, throughout the experimental run. The wetland systems achieved similar organics and P removals; operational and media variation did not influence removal kinetics. All wetland systems achieved the highest TN removal (76–87%) when subjected to 24-h flood period. TN removal performances of waste material–based wetlands were comparable to organic media-based systems. Tidal flow-based MFC wetlands achieved better TN removal than tidal flow wetlands because of supplementary electron production through fuel cell–based organics degradation kinetics. Maximum power production rates across the tidal flow-based MFC wetlands ranged between 53 and 57 mW/m 2 . Monod kinetics–based continuous stirred tank reactor (CSTR) models predicted NH 3 –N, TN, and COD removals (in wetland systems) more accurately. Kinetic models confirmed the influence of substrate (i.e., pollutant) and environmental parameters on pollutant removal routes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33594561</pmid><doi>10.1007/s11356-021-12700-8</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-1344
ispartof Environmental science and pollution research international, 2021-06, Vol.28 (24), p.30908-30928
issn 0944-1344
1614-7499
language eng
recordid cdi_proquest_journals_2545810130
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Ammonia
ammonium nitrogen
Aquatic plants
Aquatic Pollution
Artificial wetlands
Atmospheric Protection/Air Quality Control/Air Pollution
biochar
Biochemical fuel cells
Biochemical oxygen demand
Biodegradation
Biological Oxygen Demand Analysis
bricks
Charcoal
Chemical oxygen demand
Chrysopogon zizanioides
Continuously stirred tank reactors
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
Environmental science
Fuel cells
Fuel technology
fuels
Kinetics
Maximum power
microbial fuel cells
Microorganisms
Monod kinetics
Municipal wastewater
Nitrogen
Nitrogen - analysis
Nuclear fuels
Nutrient removal
Peat
Phosphorus
Phragmites australis
Pollutant removal
Pollutants
pollution control
power generation
Research Article
Slag
slags
species
steel
Substrates
Tidal flow
Tidal power
total nitrogen
Waste Disposal, Fluid
Waste materials
Waste Water Technology
Wastewater
Wastewater treatment
Water Management
Water Pollution Control
Wetlands
title Intensified constructed wetlands for the treatment of municipal wastewater: experimental investigation and kinetic modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intensified%20constructed%20wetlands%20for%20the%20treatment%20of%20municipal%20wastewater:%20experimental%20investigation%20and%20kinetic%20modelling&rft.jtitle=Environmental%20science%20and%20pollution%20research%20international&rft.au=Saeed,%20Tanveer&rft.date=2021-06-01&rft.volume=28&rft.issue=24&rft.spage=30908&rft.epage=30928&rft.pages=30908-30928&rft.issn=0944-1344&rft.eissn=1614-7499&rft_id=info:doi/10.1007/s11356-021-12700-8&rft_dat=%3Cproquest_cross%3E2661004574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545810130&rft_id=info:pmid/33594561&rfr_iscdi=true