Impact of middle east dust on subseasonal-to-seasonal variability of the Asian summer monsoon
We investigated the effect of increased spring (April–May) dust aerosol over the Arabian Peninsula (AP) on the subseasonal-to-seasonal (S2S) variability of the Asian summer monsoon (ASM) using MERRA-2 re-analysis data (1980–2018). Result shows that abundant AP spring dust leads to more dust covering...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2021-07, Vol.57 (1-2), p.37-54 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1-2 |
container_start_page | 37 |
container_title | Climate dynamics |
container_volume | 57 |
creator | Wang, Meirong Lau, William K. M. Wang, Jun |
description | We investigated the effect of increased spring (April–May) dust aerosol over the Arabian Peninsula (AP) on the subseasonal-to-seasonal (S2S) variability of the Asian summer monsoon (ASM) using MERRA-2 re-analysis data (1980–2018). Result shows that abundant AP spring dust leads to more dust covering the AP and Pakistan northwestern India (PNWI) during May–June, causing a cooler land surface and a warmer lower and middle atmosphere with enhanced local atmospheric stability. However, the warmer atmosphere increases the meridional temperature gradient, boosting moisture transport from the Arabian Sea to PNWI, causing increased convective potential energy in PNWI region. As season advances, the accumulated convection potential energy eventually breaks through the local stability, via the elevated heat pump (EHP) effect, increasing precipitation over PNWI. In July and August, cloud radiation-circulation feedback further enhances the warming of the upper troposphere, strengthening precipitation in PNWI. Dynamical adjustments of large-scale circulations induced by the feedback strongly modulate ASM precipitation. Over southern and central China, precipitation is reduced, in conjunction with a contraction of South Asian High, and the development of an anomalous east-to-west oriented upper-level wavetrain in July. In August, the upper level wavetrain undergoes strong wave-mean flow interaction, culminating in the development of an anticyclonic center with drought conditions over northeast China, Korea and Japan. Over the Indian subcontinent, increased precipitation in PNWI plays an important role in initiating the EHP feedback leading to increased precipitation over the Indian subcontinent, and in modulating the jetstream-wave interaction in downstream East Asian regions in July–August. |
doi_str_mv | 10.1007/s00382-021-05694-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2545804166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A666743093</galeid><sourcerecordid>A666743093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-1a4ac87b3f0bb8234e97f0155eec1891121fd080c3a4c6d36efc597c279550bc3</originalsourceid><addsrcrecordid>eNp9kV2L1DAUhoMoOK7-Aa8KguBF1pPv9nJY1B1YEPy4lJCmyUyWthmTVNz99Zuxis6NBJJweJ5Dcl6EXhK4JADqbQZgLcVACQYhO47vH6EN4ayW2o4_RhvoGGAllHiKnuV8C0C4VHSDvu2mo7Glib6ZwjCMrnEml2ZY6hbnJi99roU4mxGXiP_cmx8mBdOHMZS7k1oOrtnmYE7CNLnUTHHOMc7P0RNvxuxe_D4v0Nf3775cXeObjx92V9sbbDllBRPDjW1Vzzz0fUsZd53yQIRwzpK2I4QSP0ALlhlu5cCk81Z0ylLVCQG9ZRfo1dr3mOL3xeWib-OS6kOzpoKLFjiRslKXK7U3o9Nh9rEkY-sa3BRsnJ0Ptb6VUirO6sCq8OZMqExxP8veLDnr3edP5-zrf9iDM2M55DguJdRRnIN0BW2KOSfn9TGFyaQ7TUCfwtRrmLqGqX-Fqe-rxFYpV3jeu_T3g_-xHgAH3aEP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545804166</pqid></control><display><type>article</type><title>Impact of middle east dust on subseasonal-to-seasonal variability of the Asian summer monsoon</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Meirong ; Lau, William K. M. ; Wang, Jun</creator><creatorcontrib>Wang, Meirong ; Lau, William K. M. ; Wang, Jun</creatorcontrib><description>We investigated the effect of increased spring (April–May) dust aerosol over the Arabian Peninsula (AP) on the subseasonal-to-seasonal (S2S) variability of the Asian summer monsoon (ASM) using MERRA-2 re-analysis data (1980–2018). Result shows that abundant AP spring dust leads to more dust covering the AP and Pakistan northwestern India (PNWI) during May–June, causing a cooler land surface and a warmer lower and middle atmosphere with enhanced local atmospheric stability. However, the warmer atmosphere increases the meridional temperature gradient, boosting moisture transport from the Arabian Sea to PNWI, causing increased convective potential energy in PNWI region. As season advances, the accumulated convection potential energy eventually breaks through the local stability, via the elevated heat pump (EHP) effect, increasing precipitation over PNWI. In July and August, cloud radiation-circulation feedback further enhances the warming of the upper troposphere, strengthening precipitation in PNWI. Dynamical adjustments of large-scale circulations induced by the feedback strongly modulate ASM precipitation. Over southern and central China, precipitation is reduced, in conjunction with a contraction of South Asian High, and the development of an anomalous east-to-west oriented upper-level wavetrain in July. In August, the upper level wavetrain undergoes strong wave-mean flow interaction, culminating in the development of an anticyclonic center with drought conditions over northeast China, Korea and Japan. Over the Indian subcontinent, increased precipitation in PNWI plays an important role in initiating the EHP feedback leading to increased precipitation over the Indian subcontinent, and in modulating the jetstream-wave interaction in downstream East Asian regions in July–August.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-021-05694-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atmosphere ; Atmospheric aerosols ; Atmospheric particulates ; Atmospheric stability ; Climate change ; Climatology ; Contraction ; Convection ; Deserts ; Drought ; Drought conditions ; Dust ; Dust storms ; Earth and Environmental Science ; Earth Sciences ; Environmental aspects ; Feedback ; Forecasts and trends ; Geophysics/Geodesy ; Heat exchangers ; Heat pumps ; Industrial development ; Information science ; Laboratories ; Middle atmosphere ; Monsoon effects ; Monsoons ; Oceanography ; Physics ; Potential energy ; Precipitation ; Precipitation variability ; Radiation ; Radiation-cloud interactions ; Science ; Seasonal variability ; Seasonal variation ; Seasonal variations ; Seasons ; South Asian High ; Spring ; Spring (season) ; Stability ; Summer ; Summer monsoon ; Temperature gradients ; Troposphere ; Upper level waves ; Upper troposphere ; Wave interaction ; Wind</subject><ispartof>Climate dynamics, 2021-07, Vol.57 (1-2), p.37-54</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-1a4ac87b3f0bb8234e97f0155eec1891121fd080c3a4c6d36efc597c279550bc3</citedby><cites>FETCH-LOGICAL-c423t-1a4ac87b3f0bb8234e97f0155eec1891121fd080c3a4c6d36efc597c279550bc3</cites><orcidid>0000-0002-9808-8658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-021-05694-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-021-05694-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Meirong</creatorcontrib><creatorcontrib>Lau, William K. M.</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>Impact of middle east dust on subseasonal-to-seasonal variability of the Asian summer monsoon</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>We investigated the effect of increased spring (April–May) dust aerosol over the Arabian Peninsula (AP) on the subseasonal-to-seasonal (S2S) variability of the Asian summer monsoon (ASM) using MERRA-2 re-analysis data (1980–2018). Result shows that abundant AP spring dust leads to more dust covering the AP and Pakistan northwestern India (PNWI) during May–June, causing a cooler land surface and a warmer lower and middle atmosphere with enhanced local atmospheric stability. However, the warmer atmosphere increases the meridional temperature gradient, boosting moisture transport from the Arabian Sea to PNWI, causing increased convective potential energy in PNWI region. As season advances, the accumulated convection potential energy eventually breaks through the local stability, via the elevated heat pump (EHP) effect, increasing precipitation over PNWI. In July and August, cloud radiation-circulation feedback further enhances the warming of the upper troposphere, strengthening precipitation in PNWI. Dynamical adjustments of large-scale circulations induced by the feedback strongly modulate ASM precipitation. Over southern and central China, precipitation is reduced, in conjunction with a contraction of South Asian High, and the development of an anomalous east-to-west oriented upper-level wavetrain in July. In August, the upper level wavetrain undergoes strong wave-mean flow interaction, culminating in the development of an anticyclonic center with drought conditions over northeast China, Korea and Japan. Over the Indian subcontinent, increased precipitation in PNWI plays an important role in initiating the EHP feedback leading to increased precipitation over the Indian subcontinent, and in modulating the jetstream-wave interaction in downstream East Asian regions in July–August.</description><subject>Atmosphere</subject><subject>Atmospheric aerosols</subject><subject>Atmospheric particulates</subject><subject>Atmospheric stability</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Contraction</subject><subject>Convection</subject><subject>Deserts</subject><subject>Drought</subject><subject>Drought conditions</subject><subject>Dust</subject><subject>Dust storms</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental aspects</subject><subject>Feedback</subject><subject>Forecasts and trends</subject><subject>Geophysics/Geodesy</subject><subject>Heat exchangers</subject><subject>Heat pumps</subject><subject>Industrial development</subject><subject>Information science</subject><subject>Laboratories</subject><subject>Middle atmosphere</subject><subject>Monsoon effects</subject><subject>Monsoons</subject><subject>Oceanography</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Precipitation</subject><subject>Precipitation variability</subject><subject>Radiation</subject><subject>Radiation-cloud interactions</subject><subject>Science</subject><subject>Seasonal variability</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seasons</subject><subject>South Asian High</subject><subject>Spring</subject><subject>Spring (season)</subject><subject>Stability</subject><subject>Summer</subject><subject>Summer monsoon</subject><subject>Temperature gradients</subject><subject>Troposphere</subject><subject>Upper level waves</subject><subject>Upper troposphere</subject><subject>Wave interaction</subject><subject>Wind</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV2L1DAUhoMoOK7-Aa8KguBF1pPv9nJY1B1YEPy4lJCmyUyWthmTVNz99Zuxis6NBJJweJ5Dcl6EXhK4JADqbQZgLcVACQYhO47vH6EN4ayW2o4_RhvoGGAllHiKnuV8C0C4VHSDvu2mo7Glib6ZwjCMrnEml2ZY6hbnJi99roU4mxGXiP_cmx8mBdOHMZS7k1oOrtnmYE7CNLnUTHHOMc7P0RNvxuxe_D4v0Nf3775cXeObjx92V9sbbDllBRPDjW1Vzzz0fUsZd53yQIRwzpK2I4QSP0ALlhlu5cCk81Z0ylLVCQG9ZRfo1dr3mOL3xeWib-OS6kOzpoKLFjiRslKXK7U3o9Nh9rEkY-sa3BRsnJ0Ptb6VUirO6sCq8OZMqExxP8veLDnr3edP5-zrf9iDM2M55DguJdRRnIN0BW2KOSfn9TGFyaQ7TUCfwtRrmLqGqX-Fqe-rxFYpV3jeu_T3g_-xHgAH3aEP</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Wang, Meirong</creator><creator>Lau, William K. M.</creator><creator>Wang, Jun</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9808-8658</orcidid></search><sort><creationdate>20210701</creationdate><title>Impact of middle east dust on subseasonal-to-seasonal variability of the Asian summer monsoon</title><author>Wang, Meirong ; Lau, William K. M. ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-1a4ac87b3f0bb8234e97f0155eec1891121fd080c3a4c6d36efc597c279550bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmosphere</topic><topic>Atmospheric aerosols</topic><topic>Atmospheric particulates</topic><topic>Atmospheric stability</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Contraction</topic><topic>Convection</topic><topic>Deserts</topic><topic>Drought</topic><topic>Drought conditions</topic><topic>Dust</topic><topic>Dust storms</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental aspects</topic><topic>Feedback</topic><topic>Forecasts and trends</topic><topic>Geophysics/Geodesy</topic><topic>Heat exchangers</topic><topic>Heat pumps</topic><topic>Industrial development</topic><topic>Information science</topic><topic>Laboratories</topic><topic>Middle atmosphere</topic><topic>Monsoon effects</topic><topic>Monsoons</topic><topic>Oceanography</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Precipitation</topic><topic>Precipitation variability</topic><topic>Radiation</topic><topic>Radiation-cloud interactions</topic><topic>Science</topic><topic>Seasonal variability</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seasons</topic><topic>South Asian High</topic><topic>Spring</topic><topic>Spring (season)</topic><topic>Stability</topic><topic>Summer</topic><topic>Summer monsoon</topic><topic>Temperature gradients</topic><topic>Troposphere</topic><topic>Upper level waves</topic><topic>Upper troposphere</topic><topic>Wave interaction</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meirong</creatorcontrib><creatorcontrib>Lau, William K. M.</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meirong</au><au>Lau, William K. M.</au><au>Wang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of middle east dust on subseasonal-to-seasonal variability of the Asian summer monsoon</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>57</volume><issue>1-2</issue><spage>37</spage><epage>54</epage><pages>37-54</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>We investigated the effect of increased spring (April–May) dust aerosol over the Arabian Peninsula (AP) on the subseasonal-to-seasonal (S2S) variability of the Asian summer monsoon (ASM) using MERRA-2 re-analysis data (1980–2018). Result shows that abundant AP spring dust leads to more dust covering the AP and Pakistan northwestern India (PNWI) during May–June, causing a cooler land surface and a warmer lower and middle atmosphere with enhanced local atmospheric stability. However, the warmer atmosphere increases the meridional temperature gradient, boosting moisture transport from the Arabian Sea to PNWI, causing increased convective potential energy in PNWI region. As season advances, the accumulated convection potential energy eventually breaks through the local stability, via the elevated heat pump (EHP) effect, increasing precipitation over PNWI. In July and August, cloud radiation-circulation feedback further enhances the warming of the upper troposphere, strengthening precipitation in PNWI. Dynamical adjustments of large-scale circulations induced by the feedback strongly modulate ASM precipitation. Over southern and central China, precipitation is reduced, in conjunction with a contraction of South Asian High, and the development of an anomalous east-to-west oriented upper-level wavetrain in July. In August, the upper level wavetrain undergoes strong wave-mean flow interaction, culminating in the development of an anticyclonic center with drought conditions over northeast China, Korea and Japan. Over the Indian subcontinent, increased precipitation in PNWI plays an important role in initiating the EHP feedback leading to increased precipitation over the Indian subcontinent, and in modulating the jetstream-wave interaction in downstream East Asian regions in July–August.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-021-05694-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9808-8658</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2021-07, Vol.57 (1-2), p.37-54 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2545804166 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atmosphere Atmospheric aerosols Atmospheric particulates Atmospheric stability Climate change Climatology Contraction Convection Deserts Drought Drought conditions Dust Dust storms Earth and Environmental Science Earth Sciences Environmental aspects Feedback Forecasts and trends Geophysics/Geodesy Heat exchangers Heat pumps Industrial development Information science Laboratories Middle atmosphere Monsoon effects Monsoons Oceanography Physics Potential energy Precipitation Precipitation variability Radiation Radiation-cloud interactions Science Seasonal variability Seasonal variation Seasonal variations Seasons South Asian High Spring Spring (season) Stability Summer Summer monsoon Temperature gradients Troposphere Upper level waves Upper troposphere Wave interaction Wind |
title | Impact of middle east dust on subseasonal-to-seasonal variability of the Asian summer monsoon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A41%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20middle%20east%20dust%20on%20subseasonal-to-seasonal%20variability%20of%20the%20Asian%20summer%20monsoon&rft.jtitle=Climate%20dynamics&rft.au=Wang,%20Meirong&rft.date=2021-07-01&rft.volume=57&rft.issue=1-2&rft.spage=37&rft.epage=54&rft.pages=37-54&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-021-05694-z&rft_dat=%3Cgale_proqu%3EA666743093%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545804166&rft_id=info:pmid/&rft_galeid=A666743093&rfr_iscdi=true |