Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies
Recent years have seen stagnating improvements to branch predictor (BP) efficacy and a dearth of fresh ideas in branch predictor design, calling for fresh thinking in this area. This paper argues that looking at BP from the viewpoint of Reinforcement Learning (RL) facilitates systematic reasoning ab...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zouzias, Anastasios Kalaitzidis, Kleovoulos Grot, Boris |
description | Recent years have seen stagnating improvements to branch predictor (BP) efficacy and a dearth of fresh ideas in branch predictor design, calling for fresh thinking in this area. This paper argues that looking at BP from the viewpoint of Reinforcement Learning (RL) facilitates systematic reasoning about, and exploration of, BP designs. We describe how to apply the RL formulation to branch predictors, show that existing predictors can be succinctly expressed in this formulation, and study two RL-based variants of conventional BPs. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2545772411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545772411</sourcerecordid><originalsourceid>FETCH-proquest_journals_25457724113</originalsourceid><addsrcrecordid>eNqNysEKgkAUQNEhCJLyHx60TdAZJ6NlUrhoERW0lEmfOaJvakaJ_j4XfUCru7hnwjwuRBRsYs5nzHeuCcOQrxMupfDYaWcVFTWcLJa66LUhUA4UnFFTZWyBHVIPR1SWND1GZu4tdlu41Z8VZOYNikpIlUO49EOp0S3YtFKtQ__XOVse9tc0C57WvAZ0fd6YwdK4ci5jmSQ8jiLxn_oC0xI9ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545772411</pqid></control><display><type>article</type><title>Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies</title><source>Free E- Journals</source><creator>Zouzias, Anastasios ; Kalaitzidis, Kleovoulos ; Grot, Boris</creator><creatorcontrib>Zouzias, Anastasios ; Kalaitzidis, Kleovoulos ; Grot, Boris</creatorcontrib><description>Recent years have seen stagnating improvements to branch predictor (BP) efficacy and a dearth of fresh ideas in branch predictor design, calling for fresh thinking in this area. This paper argues that looking at BP from the viewpoint of Reinforcement Learning (RL) facilitates systematic reasoning about, and exploration of, BP designs. We describe how to apply the RL formulation to branch predictors, show that existing predictors can be succinctly expressed in this formulation, and study two RL-based variants of conventional BPs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Learning</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zouzias, Anastasios</creatorcontrib><creatorcontrib>Kalaitzidis, Kleovoulos</creatorcontrib><creatorcontrib>Grot, Boris</creatorcontrib><title>Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies</title><title>arXiv.org</title><description>Recent years have seen stagnating improvements to branch predictor (BP) efficacy and a dearth of fresh ideas in branch predictor design, calling for fresh thinking in this area. This paper argues that looking at BP from the viewpoint of Reinforcement Learning (RL) facilitates systematic reasoning about, and exploration of, BP designs. We describe how to apply the RL formulation to branch predictors, show that existing predictors can be succinctly expressed in this formulation, and study two RL-based variants of conventional BPs.</description><subject>Learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAUQNEhCJLyHx60TdAZJ6NlUrhoERW0lEmfOaJvakaJ_j4XfUCru7hnwjwuRBRsYs5nzHeuCcOQrxMupfDYaWcVFTWcLJa66LUhUA4UnFFTZWyBHVIPR1SWND1GZu4tdlu41Z8VZOYNikpIlUO49EOp0S3YtFKtQ__XOVse9tc0C57WvAZ0fd6YwdK4ci5jmSQ8jiLxn_oC0xI9ww</recordid><startdate>20210625</startdate><enddate>20210625</enddate><creator>Zouzias, Anastasios</creator><creator>Kalaitzidis, Kleovoulos</creator><creator>Grot, Boris</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210625</creationdate><title>Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies</title><author>Zouzias, Anastasios ; Kalaitzidis, Kleovoulos ; Grot, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25457724113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zouzias, Anastasios</creatorcontrib><creatorcontrib>Kalaitzidis, Kleovoulos</creatorcontrib><creatorcontrib>Grot, Boris</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zouzias, Anastasios</au><au>Kalaitzidis, Kleovoulos</au><au>Grot, Boris</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies</atitle><jtitle>arXiv.org</jtitle><date>2021-06-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Recent years have seen stagnating improvements to branch predictor (BP) efficacy and a dearth of fresh ideas in branch predictor design, calling for fresh thinking in this area. This paper argues that looking at BP from the viewpoint of Reinforcement Learning (RL) facilitates systematic reasoning about, and exploration of, BP designs. We describe how to apply the RL formulation to branch predictors, show that existing predictors can be succinctly expressed in this formulation, and study two RL-based variants of conventional BPs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2545772411 |
source | Free E- Journals |
subjects | Learning |
title | Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Branch%20Prediction%20as%20a%20Reinforcement%20Learning%20Problem:%20Why,%20How%20and%20Case%20Studies&rft.jtitle=arXiv.org&rft.au=Zouzias,%20Anastasios&rft.date=2021-06-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2545772411%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545772411&rft_id=info:pmid/&rfr_iscdi=true |