Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies

Recent years have seen stagnating improvements to branch predictor (BP) efficacy and a dearth of fresh ideas in branch predictor design, calling for fresh thinking in this area. This paper argues that looking at BP from the viewpoint of Reinforcement Learning (RL) facilitates systematic reasoning ab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-06
Hauptverfasser: Zouzias, Anastasios, Kalaitzidis, Kleovoulos, Grot, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zouzias, Anastasios
Kalaitzidis, Kleovoulos
Grot, Boris
description Recent years have seen stagnating improvements to branch predictor (BP) efficacy and a dearth of fresh ideas in branch predictor design, calling for fresh thinking in this area. This paper argues that looking at BP from the viewpoint of Reinforcement Learning (RL) facilitates systematic reasoning about, and exploration of, BP designs. We describe how to apply the RL formulation to branch predictors, show that existing predictors can be succinctly expressed in this formulation, and study two RL-based variants of conventional BPs.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2545772411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545772411</sourcerecordid><originalsourceid>FETCH-proquest_journals_25457724113</originalsourceid><addsrcrecordid>eNqNysEKgkAUQNEhCJLyHx60TdAZJ6NlUrhoERW0lEmfOaJvakaJ_j4XfUCru7hnwjwuRBRsYs5nzHeuCcOQrxMupfDYaWcVFTWcLJa66LUhUA4UnFFTZWyBHVIPR1SWND1GZu4tdlu41Z8VZOYNikpIlUO49EOp0S3YtFKtQ__XOVse9tc0C57WvAZ0fd6YwdK4ci5jmSQ8jiLxn_oC0xI9ww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545772411</pqid></control><display><type>article</type><title>Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies</title><source>Free E- Journals</source><creator>Zouzias, Anastasios ; Kalaitzidis, Kleovoulos ; Grot, Boris</creator><creatorcontrib>Zouzias, Anastasios ; Kalaitzidis, Kleovoulos ; Grot, Boris</creatorcontrib><description>Recent years have seen stagnating improvements to branch predictor (BP) efficacy and a dearth of fresh ideas in branch predictor design, calling for fresh thinking in this area. This paper argues that looking at BP from the viewpoint of Reinforcement Learning (RL) facilitates systematic reasoning about, and exploration of, BP designs. We describe how to apply the RL formulation to branch predictors, show that existing predictors can be succinctly expressed in this formulation, and study two RL-based variants of conventional BPs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Learning</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zouzias, Anastasios</creatorcontrib><creatorcontrib>Kalaitzidis, Kleovoulos</creatorcontrib><creatorcontrib>Grot, Boris</creatorcontrib><title>Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies</title><title>arXiv.org</title><description>Recent years have seen stagnating improvements to branch predictor (BP) efficacy and a dearth of fresh ideas in branch predictor design, calling for fresh thinking in this area. This paper argues that looking at BP from the viewpoint of Reinforcement Learning (RL) facilitates systematic reasoning about, and exploration of, BP designs. We describe how to apply the RL formulation to branch predictors, show that existing predictors can be succinctly expressed in this formulation, and study two RL-based variants of conventional BPs.</description><subject>Learning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAUQNEhCJLyHx60TdAZJ6NlUrhoERW0lEmfOaJvakaJ_j4XfUCru7hnwjwuRBRsYs5nzHeuCcOQrxMupfDYaWcVFTWcLJa66LUhUA4UnFFTZWyBHVIPR1SWND1GZu4tdlu41Z8VZOYNikpIlUO49EOp0S3YtFKtQ__XOVse9tc0C57WvAZ0fd6YwdK4ci5jmSQ8jiLxn_oC0xI9ww</recordid><startdate>20210625</startdate><enddate>20210625</enddate><creator>Zouzias, Anastasios</creator><creator>Kalaitzidis, Kleovoulos</creator><creator>Grot, Boris</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210625</creationdate><title>Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies</title><author>Zouzias, Anastasios ; Kalaitzidis, Kleovoulos ; Grot, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25457724113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Zouzias, Anastasios</creatorcontrib><creatorcontrib>Kalaitzidis, Kleovoulos</creatorcontrib><creatorcontrib>Grot, Boris</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zouzias, Anastasios</au><au>Kalaitzidis, Kleovoulos</au><au>Grot, Boris</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies</atitle><jtitle>arXiv.org</jtitle><date>2021-06-25</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Recent years have seen stagnating improvements to branch predictor (BP) efficacy and a dearth of fresh ideas in branch predictor design, calling for fresh thinking in this area. This paper argues that looking at BP from the viewpoint of Reinforcement Learning (RL) facilitates systematic reasoning about, and exploration of, BP designs. We describe how to apply the RL formulation to branch predictors, show that existing predictors can be succinctly expressed in this formulation, and study two RL-based variants of conventional BPs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2545772411
source Free E- Journals
subjects Learning
title Branch Prediction as a Reinforcement Learning Problem: Why, How and Case Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Branch%20Prediction%20as%20a%20Reinforcement%20Learning%20Problem:%20Why,%20How%20and%20Case%20Studies&rft.jtitle=arXiv.org&rft.au=Zouzias,%20Anastasios&rft.date=2021-06-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2545772411%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545772411&rft_id=info:pmid/&rfr_iscdi=true