Online Learning and Active Learning: A Comparative Study of Passive-Aggressive Algorithm With Support Vector Machine (SVM)
Passive aggressive online learning is an extension of Support Vector Machine (SVM) to the context of online learning for binary classification. In this paper we consider the application of the algorithm on anomaly labeling for IJCNN 2001 Neural Network Competition dataset from LibSVM dataset reposit...
Gespeichert in:
Veröffentlicht in: | Journal of higher education theory and practice 2021, Vol.21 (3), p.161-171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | 3 |
container_start_page | 161 |
container_title | Journal of higher education theory and practice |
container_volume | 21 |
creator | Ezukwoke, KI Zareian, SJ |
description | Passive aggressive online learning is an extension of Support Vector Machine (SVM) to the context of online learning for binary classification. In this paper we consider the application of the algorithm on anomaly labeling for IJCNN 2001 Neural Network Competition dataset from LibSVM dataset repository1 from Ford Research Laboratory. We also work on an improved version of the online learning algorithm called Active learning and we compare both algorithms to that of SVM (from LibSVM library). We propose different experimental setups for comparing the algorithms. |
doi_str_mv | 10.33423/jhetp.v21i3.4152 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545664754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545664754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c140t-861aeefc330ee71ff62d335e0240203ffc9d7a17c3e58dcf823f08f6871217a83</originalsourceid><addsrcrecordid>eNpNkN1LwzAUxYMoOOb-AN8CvuhDZz7bzLcy_IKNCdP5GEKadB1bU5N0MP96u07Q-3Dv4XC4B34AXGM0ppQRer9Zm9iM9wRXdMwwJ2dgQDAXCeUTfv5PX4JRCBvUTYowYXgAvhf1tqoNnBnl66ouoaoLmOtY7f-8B5jDqds1yqveX8a2OEBn4ZsKoTOSvCy96SXMt6XzVVzv4Ge34bJtGucjXBkdnYdzpdfHttvlan53BS6s2gYz-r1D8PH0-D59SWaL59dpPks0ZigmIsXKGKspRcZk2NqUFJRygwhDBFFr9aTIFM40NVwU2gpCLRI2FRkmOFOCDsHN6W_j3VdrQpQb1_q6q5SEM56mLOOsS-FTSnsXgjdWNr7aKX-QGMmesuwpy56yPFKmP7BYcc0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545664754</pqid></control><display><type>article</type><title>Online Learning and Active Learning: A Comparative Study of Passive-Aggressive Algorithm With Support Vector Machine (SVM)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Education Source</source><creator>Ezukwoke, KI ; Zareian, SJ</creator><creatorcontrib>Ezukwoke, KI ; Zareian, SJ</creatorcontrib><description>Passive aggressive online learning is an extension of Support Vector Machine (SVM) to the context of online learning for binary classification. In this paper we consider the application of the algorithm on anomaly labeling for IJCNN 2001 Neural Network Competition dataset from LibSVM dataset repository1 from Ford Research Laboratory. We also work on an improved version of the online learning algorithm called Active learning and we compare both algorithms to that of SVM (from LibSVM library). We propose different experimental setups for comparing the algorithms.</description><identifier>ISSN: 2158-3595</identifier><identifier>EISSN: 2158-3595</identifier><identifier>DOI: 10.33423/jhetp.v21i3.4152</identifier><language>eng</language><publisher>West Palm Beach: North American Business Press</publisher><subject>Accuracy ; Active learning ; Algorithms ; Classification ; Comparative Analysis ; Datasets ; Distance learning ; Electronic Learning ; Experiments ; Labeling ; Passive-aggressive behavior ; Random variables ; Support vector machines ; Time series</subject><ispartof>Journal of higher education theory and practice, 2021, Vol.21 (3), p.161-171</ispartof><rights>Copyright North American Business Press 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,4026,27930,27931,27932</link.rule.ids></links><search><creatorcontrib>Ezukwoke, KI</creatorcontrib><creatorcontrib>Zareian, SJ</creatorcontrib><title>Online Learning and Active Learning: A Comparative Study of Passive-Aggressive Algorithm With Support Vector Machine (SVM)</title><title>Journal of higher education theory and practice</title><description>Passive aggressive online learning is an extension of Support Vector Machine (SVM) to the context of online learning for binary classification. In this paper we consider the application of the algorithm on anomaly labeling for IJCNN 2001 Neural Network Competition dataset from LibSVM dataset repository1 from Ford Research Laboratory. We also work on an improved version of the online learning algorithm called Active learning and we compare both algorithms to that of SVM (from LibSVM library). We propose different experimental setups for comparing the algorithms.</description><subject>Accuracy</subject><subject>Active learning</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Comparative Analysis</subject><subject>Datasets</subject><subject>Distance learning</subject><subject>Electronic Learning</subject><subject>Experiments</subject><subject>Labeling</subject><subject>Passive-aggressive behavior</subject><subject>Random variables</subject><subject>Support vector machines</subject><subject>Time series</subject><issn>2158-3595</issn><issn>2158-3595</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkN1LwzAUxYMoOOb-AN8CvuhDZz7bzLcy_IKNCdP5GEKadB1bU5N0MP96u07Q-3Dv4XC4B34AXGM0ppQRer9Zm9iM9wRXdMwwJ2dgQDAXCeUTfv5PX4JRCBvUTYowYXgAvhf1tqoNnBnl66ouoaoLmOtY7f-8B5jDqds1yqveX8a2OEBn4ZsKoTOSvCy96SXMt6XzVVzv4Ge34bJtGucjXBkdnYdzpdfHttvlan53BS6s2gYz-r1D8PH0-D59SWaL59dpPks0ZigmIsXKGKspRcZk2NqUFJRygwhDBFFr9aTIFM40NVwU2gpCLRI2FRkmOFOCDsHN6W_j3VdrQpQb1_q6q5SEM56mLOOsS-FTSnsXgjdWNr7aKX-QGMmesuwpy56yPFKmP7BYcc0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ezukwoke, KI</creator><creator>Zareian, SJ</creator><general>North American Business Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>M0P</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2021</creationdate><title>Online Learning and Active Learning: A Comparative Study of Passive-Aggressive Algorithm With Support Vector Machine (SVM)</title><author>Ezukwoke, KI ; Zareian, SJ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c140t-861aeefc330ee71ff62d335e0240203ffc9d7a17c3e58dcf823f08f6871217a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Active learning</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Comparative Analysis</topic><topic>Datasets</topic><topic>Distance learning</topic><topic>Electronic Learning</topic><topic>Experiments</topic><topic>Labeling</topic><topic>Passive-aggressive behavior</topic><topic>Random variables</topic><topic>Support vector machines</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ezukwoke, KI</creatorcontrib><creatorcontrib>Zareian, SJ</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Education Database</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of higher education theory and practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezukwoke, KI</au><au>Zareian, SJ</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Learning and Active Learning: A Comparative Study of Passive-Aggressive Algorithm With Support Vector Machine (SVM)</atitle><jtitle>Journal of higher education theory and practice</jtitle><date>2021</date><risdate>2021</risdate><volume>21</volume><issue>3</issue><spage>161</spage><epage>171</epage><pages>161-171</pages><issn>2158-3595</issn><eissn>2158-3595</eissn><abstract>Passive aggressive online learning is an extension of Support Vector Machine (SVM) to the context of online learning for binary classification. In this paper we consider the application of the algorithm on anomaly labeling for IJCNN 2001 Neural Network Competition dataset from LibSVM dataset repository1 from Ford Research Laboratory. We also work on an improved version of the online learning algorithm called Active learning and we compare both algorithms to that of SVM (from LibSVM library). We propose different experimental setups for comparing the algorithms.</abstract><cop>West Palm Beach</cop><pub>North American Business Press</pub><doi>10.33423/jhetp.v21i3.4152</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3595 |
ispartof | Journal of higher education theory and practice, 2021, Vol.21 (3), p.161-171 |
issn | 2158-3595 2158-3595 |
language | eng |
recordid | cdi_proquest_journals_2545664754 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Education Source |
subjects | Accuracy Active learning Algorithms Classification Comparative Analysis Datasets Distance learning Electronic Learning Experiments Labeling Passive-aggressive behavior Random variables Support vector machines Time series |
title | Online Learning and Active Learning: A Comparative Study of Passive-Aggressive Algorithm With Support Vector Machine (SVM) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A20%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Learning%20and%20Active%20Learning:%20A%20Comparative%20Study%20of%20Passive-Aggressive%20Algorithm%20With%20Support%20Vector%20Machine%20(SVM)&rft.jtitle=Journal%20of%20higher%20education%20theory%20and%20practice&rft.au=Ezukwoke,%20KI&rft.date=2021&rft.volume=21&rft.issue=3&rft.spage=161&rft.epage=171&rft.pages=161-171&rft.issn=2158-3595&rft.eissn=2158-3595&rft_id=info:doi/10.33423/jhetp.v21i3.4152&rft_dat=%3Cproquest_cross%3E2545664754%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545664754&rft_id=info:pmid/&rfr_iscdi=true |