Turbulent Flow Characteristics in a Model of a Solid Rocket Motor Chamber with Sidewall Mass Injection and End-Wall Disturbance
The present analytical, numerical, and experimental investigations are performed to study the flow field in acoustically simulated solid rocket motor (SRM) chamber geometry. The computational solution is carried out for a high Reynolds number and low Mach number internal flows driven by sidewall mas...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021, Vol.2021, p.1-17 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Albatati, F. A. Hegab, A. M. Rady, M. A. Abuhabaya, A. A. El-Behery, S. M. |
description | The present analytical, numerical, and experimental investigations are performed to study the flow field in acoustically simulated solid rocket motor (SRM) chamber geometry. The computational solution is carried out for a high Reynolds number and low Mach number internal flows driven by sidewall mass addition in a long chamber with end-wall disturbances. This kind of flow (transient, weakly viscous, and contains vorticity) have several features in common with a turbulent flow field. The numerical study is performed by solving the unsteady Reynolds-averaged Navier–Stokes equations along with the energy equation using the control volume approach based on a staggered grid system. The v2-f turbulence model has been implemented in the current study. A comparison of the SIMPLE and PISO algorithms showed that both algorithms provide identical results, and the computational time using the PISO algorithm is higher by about 6% than the corresponding value of the SIMPLE algorithm. A fair agreement has been obtained between the numerical, analytical, and experimental results. Moreover, the results showed that the complex turbulent internal flow patterns are induced inside the chamber due to the strong interaction of the sidewall injection with the traveling acoustic waves. Such a complex internal structure is shown to be dependent on the piston frequency and sidewall mass flux. The current study, for the first time, emphasizes the acoustic-fluid dynamics interaction mechanism and the accompanying unsteady rotational fields along with the effect of the generated turbulence on the unsteady vorticity and its impact on the real burning rate. |
doi_str_mv | 10.1155/2021/9978102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545427032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545427032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c8780132d17ad497ede9913dd99801a06c09d4ab321041d83c861bee3259c0093</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKs7HyDgUsfmZ9KZLKW2WrAItqK7IZOkNHWa1CTD4MpXN0O7dnUP9373HDgAXGN0jzFjI4IIHnFelBiREzDAbEwzhvPiNGlE8gwT-nkOLkLYokQyXA7A76r1ddtoG-GscR2cbIQXMmpvQjQyQGOhgAundAPdOsmla4yCb05-6Zj20fn-ZVdrDzsTN3BplO5E08CFCAHO7VbLaFwysQpOrco--ttjMk-xwkp9Cc7Wogn66jiH4H02XU2es5fXp_nk4SWTlBYxk2VRIkyJwoVQOS-00pxjqhTnaS_QWCKuclFTglGOVUllOca11pQwLhHidAhuDr57775bHWK1da23KbIiLGc5KRAlibo7UNK7ELxeV3tvdsL_VBhVfcVVX3F1rDjhtwd8Y6wSnfmf_gMVbnpm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545427032</pqid></control><display><type>article</type><title>Turbulent Flow Characteristics in a Model of a Solid Rocket Motor Chamber with Sidewall Mass Injection and End-Wall Disturbance</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Albatati, F. A. ; Hegab, A. M. ; Rady, M. A. ; Abuhabaya, A. A. ; El-Behery, S. M.</creator><contributor>Nguyen Thanh, Nhon ; Nhon Nguyen Thanh</contributor><creatorcontrib>Albatati, F. A. ; Hegab, A. M. ; Rady, M. A. ; Abuhabaya, A. A. ; El-Behery, S. M. ; Nguyen Thanh, Nhon ; Nhon Nguyen Thanh</creatorcontrib><description>The present analytical, numerical, and experimental investigations are performed to study the flow field in acoustically simulated solid rocket motor (SRM) chamber geometry. The computational solution is carried out for a high Reynolds number and low Mach number internal flows driven by sidewall mass addition in a long chamber with end-wall disturbances. This kind of flow (transient, weakly viscous, and contains vorticity) have several features in common with a turbulent flow field. The numerical study is performed by solving the unsteady Reynolds-averaged Navier–Stokes equations along with the energy equation using the control volume approach based on a staggered grid system. The v2-f turbulence model has been implemented in the current study. A comparison of the SIMPLE and PISO algorithms showed that both algorithms provide identical results, and the computational time using the PISO algorithm is higher by about 6% than the corresponding value of the SIMPLE algorithm. A fair agreement has been obtained between the numerical, analytical, and experimental results. Moreover, the results showed that the complex turbulent internal flow patterns are induced inside the chamber due to the strong interaction of the sidewall injection with the traveling acoustic waves. Such a complex internal structure is shown to be dependent on the piston frequency and sidewall mass flux. The current study, for the first time, emphasizes the acoustic-fluid dynamics interaction mechanism and the accompanying unsteady rotational fields along with the effect of the generated turbulence on the unsteady vorticity and its impact on the real burning rate.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/9978102</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Acoustic waves ; Acoustics ; Algorithms ; Boundary conditions ; Burning rate ; Chambers ; Computational fluid dynamics ; Computing time ; Design ; Flow characteristics ; Flow distribution ; Fluid dynamics ; Fluid flow ; High Reynolds number ; Internal flow ; Investigations ; Mach number ; Reynolds number ; Solid propellant rocket engines ; Strong interactions (field theory) ; Turbulence models ; Turbulent flow ; Velocity ; Vorticity</subject><ispartof>Mathematical problems in engineering, 2021, Vol.2021, p.1-17</ispartof><rights>Copyright © 2021 F. A. Albatati et al.</rights><rights>Copyright © 2021 F. A. Albatati et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c8780132d17ad497ede9913dd99801a06c09d4ab321041d83c861bee3259c0093</citedby><cites>FETCH-LOGICAL-c337t-c8780132d17ad497ede9913dd99801a06c09d4ab321041d83c861bee3259c0093</cites><orcidid>0000-0002-2179-321X ; 0000-0002-1986-0903 ; 0000-0001-5745-4538 ; 0000-0003-0708-6452 ; 0000-0002-8258-4905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Nguyen Thanh, Nhon</contributor><contributor>Nhon Nguyen Thanh</contributor><creatorcontrib>Albatati, F. A.</creatorcontrib><creatorcontrib>Hegab, A. M.</creatorcontrib><creatorcontrib>Rady, M. A.</creatorcontrib><creatorcontrib>Abuhabaya, A. A.</creatorcontrib><creatorcontrib>El-Behery, S. M.</creatorcontrib><title>Turbulent Flow Characteristics in a Model of a Solid Rocket Motor Chamber with Sidewall Mass Injection and End-Wall Disturbance</title><title>Mathematical problems in engineering</title><description>The present analytical, numerical, and experimental investigations are performed to study the flow field in acoustically simulated solid rocket motor (SRM) chamber geometry. The computational solution is carried out for a high Reynolds number and low Mach number internal flows driven by sidewall mass addition in a long chamber with end-wall disturbances. This kind of flow (transient, weakly viscous, and contains vorticity) have several features in common with a turbulent flow field. The numerical study is performed by solving the unsteady Reynolds-averaged Navier–Stokes equations along with the energy equation using the control volume approach based on a staggered grid system. The v2-f turbulence model has been implemented in the current study. A comparison of the SIMPLE and PISO algorithms showed that both algorithms provide identical results, and the computational time using the PISO algorithm is higher by about 6% than the corresponding value of the SIMPLE algorithm. A fair agreement has been obtained between the numerical, analytical, and experimental results. Moreover, the results showed that the complex turbulent internal flow patterns are induced inside the chamber due to the strong interaction of the sidewall injection with the traveling acoustic waves. Such a complex internal structure is shown to be dependent on the piston frequency and sidewall mass flux. The current study, for the first time, emphasizes the acoustic-fluid dynamics interaction mechanism and the accompanying unsteady rotational fields along with the effect of the generated turbulence on the unsteady vorticity and its impact on the real burning rate.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Boundary conditions</subject><subject>Burning rate</subject><subject>Chambers</subject><subject>Computational fluid dynamics</subject><subject>Computing time</subject><subject>Design</subject><subject>Flow characteristics</subject><subject>Flow distribution</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>High Reynolds number</subject><subject>Internal flow</subject><subject>Investigations</subject><subject>Mach number</subject><subject>Reynolds number</subject><subject>Solid propellant rocket engines</subject><subject>Strong interactions (field theory)</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Velocity</subject><subject>Vorticity</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1KAzEUhYMoWKs7HyDgUsfmZ9KZLKW2WrAItqK7IZOkNHWa1CTD4MpXN0O7dnUP9373HDgAXGN0jzFjI4IIHnFelBiREzDAbEwzhvPiNGlE8gwT-nkOLkLYokQyXA7A76r1ddtoG-GscR2cbIQXMmpvQjQyQGOhgAundAPdOsmla4yCb05-6Zj20fn-ZVdrDzsTN3BplO5E08CFCAHO7VbLaFwysQpOrco--ttjMk-xwkp9Cc7Wogn66jiH4H02XU2es5fXp_nk4SWTlBYxk2VRIkyJwoVQOS-00pxjqhTnaS_QWCKuclFTglGOVUllOca11pQwLhHidAhuDr57775bHWK1da23KbIiLGc5KRAlibo7UNK7ELxeV3tvdsL_VBhVfcVVX3F1rDjhtwd8Y6wSnfmf_gMVbnpm</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Albatati, F. A.</creator><creator>Hegab, A. M.</creator><creator>Rady, M. A.</creator><creator>Abuhabaya, A. A.</creator><creator>El-Behery, S. M.</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2179-321X</orcidid><orcidid>https://orcid.org/0000-0002-1986-0903</orcidid><orcidid>https://orcid.org/0000-0001-5745-4538</orcidid><orcidid>https://orcid.org/0000-0003-0708-6452</orcidid><orcidid>https://orcid.org/0000-0002-8258-4905</orcidid></search><sort><creationdate>2021</creationdate><title>Turbulent Flow Characteristics in a Model of a Solid Rocket Motor Chamber with Sidewall Mass Injection and End-Wall Disturbance</title><author>Albatati, F. A. ; Hegab, A. M. ; Rady, M. A. ; Abuhabaya, A. A. ; El-Behery, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c8780132d17ad497ede9913dd99801a06c09d4ab321041d83c861bee3259c0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Boundary conditions</topic><topic>Burning rate</topic><topic>Chambers</topic><topic>Computational fluid dynamics</topic><topic>Computing time</topic><topic>Design</topic><topic>Flow characteristics</topic><topic>Flow distribution</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>High Reynolds number</topic><topic>Internal flow</topic><topic>Investigations</topic><topic>Mach number</topic><topic>Reynolds number</topic><topic>Solid propellant rocket engines</topic><topic>Strong interactions (field theory)</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Velocity</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albatati, F. A.</creatorcontrib><creatorcontrib>Hegab, A. M.</creatorcontrib><creatorcontrib>Rady, M. A.</creatorcontrib><creatorcontrib>Abuhabaya, A. A.</creatorcontrib><creatorcontrib>El-Behery, S. M.</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albatati, F. A.</au><au>Hegab, A. M.</au><au>Rady, M. A.</au><au>Abuhabaya, A. A.</au><au>El-Behery, S. M.</au><au>Nguyen Thanh, Nhon</au><au>Nhon Nguyen Thanh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent Flow Characteristics in a Model of a Solid Rocket Motor Chamber with Sidewall Mass Injection and End-Wall Disturbance</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The present analytical, numerical, and experimental investigations are performed to study the flow field in acoustically simulated solid rocket motor (SRM) chamber geometry. The computational solution is carried out for a high Reynolds number and low Mach number internal flows driven by sidewall mass addition in a long chamber with end-wall disturbances. This kind of flow (transient, weakly viscous, and contains vorticity) have several features in common with a turbulent flow field. The numerical study is performed by solving the unsteady Reynolds-averaged Navier–Stokes equations along with the energy equation using the control volume approach based on a staggered grid system. The v2-f turbulence model has been implemented in the current study. A comparison of the SIMPLE and PISO algorithms showed that both algorithms provide identical results, and the computational time using the PISO algorithm is higher by about 6% than the corresponding value of the SIMPLE algorithm. A fair agreement has been obtained between the numerical, analytical, and experimental results. Moreover, the results showed that the complex turbulent internal flow patterns are induced inside the chamber due to the strong interaction of the sidewall injection with the traveling acoustic waves. Such a complex internal structure is shown to be dependent on the piston frequency and sidewall mass flux. The current study, for the first time, emphasizes the acoustic-fluid dynamics interaction mechanism and the accompanying unsteady rotational fields along with the effect of the generated turbulence on the unsteady vorticity and its impact on the real burning rate.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/9978102</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2179-321X</orcidid><orcidid>https://orcid.org/0000-0002-1986-0903</orcidid><orcidid>https://orcid.org/0000-0001-5745-4538</orcidid><orcidid>https://orcid.org/0000-0003-0708-6452</orcidid><orcidid>https://orcid.org/0000-0002-8258-4905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021, Vol.2021, p.1-17 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2545427032 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Acoustic waves Acoustics Algorithms Boundary conditions Burning rate Chambers Computational fluid dynamics Computing time Design Flow characteristics Flow distribution Fluid dynamics Fluid flow High Reynolds number Internal flow Investigations Mach number Reynolds number Solid propellant rocket engines Strong interactions (field theory) Turbulence models Turbulent flow Velocity Vorticity |
title | Turbulent Flow Characteristics in a Model of a Solid Rocket Motor Chamber with Sidewall Mass Injection and End-Wall Disturbance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20Flow%20Characteristics%20in%20a%20Model%20of%20a%20Solid%20Rocket%20Motor%20Chamber%20with%20Sidewall%20Mass%20Injection%20and%20End-Wall%20Disturbance&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Albatati,%20F.%20A.&rft.date=2021&rft.volume=2021&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/9978102&rft_dat=%3Cproquest_cross%3E2545427032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545427032&rft_id=info:pmid/&rfr_iscdi=true |