Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems
With the development of smart manufacturing, quality has become an indispensable issue in the manufacturing process. Although there is increasing publication about inspection allocation problems, inspection allocation optimization research considering resource capability is scarce. This paper focuse...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2021-06, Vol.2021, p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | You, Yingchao Duan, Guijiang Liu, Rui Liu, Taotao Huang, Mingcong |
description | With the development of smart manufacturing, quality has become an indispensable issue in the manufacturing process. Although there is increasing publication about inspection allocation problems, inspection allocation optimization research considering resource capability is scarce. This paper focuses on the inspection allocation problem with resource constraints in the flexible manufacturing system. Combined with the inspection resource capability model, a bi-objective model is developed to minimize the cost and balance loads of the inspection station. A modified NSGA-II algorithm with adaptive mutation operators is suggested to deal with the proposed model. Finally, a simulation experiment is conducted to test the performance of the modified algorithm and the results demonstrate that modified NSGA-II can obtain acceptable inspection solutions. |
doi_str_mv | 10.1155/2021/3976576 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545427011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545427011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-640503c03d54affb0622fee97012d13014d9813bb96bb868110c57c6cb67c5343</originalsourceid><addsrcrecordid>eNp9kM1Kw0AURoMoWKs7H2DApcbOf5JlLbYGWgtWwV2YTCZ2SjqJmQltfXqnpmtX97tw-C73BMEtgo8IMTbCEKMRSSLOIn4WDBDjJGSIRuc-Q0xDhMnnZXBl7QZ6kqF4EOxTYxslna4NGFdVLcVfXDZOb_VPv-y0W4M3ZeuulQpMamNdK7RxFjwJqwrgkUVd6FL7_LqajcM0BdqAaaX2Oq8UWAjTlUK6rtXmC6wO1qmtvQ4uSlFZdXOaw-Bj-vw-eQnny1k6Gc9DiRPqQk4hg0RCUjAqyjKHHONSqSSCCBeIQESLJEYkzxOe5zGPEYKSRZLLnEeSEUqGwV3f27T1d6esyzb-D-NPZphRRrFvQp566CnZ1ta2qsyaVm9Fe8gQzI5us6Pb7OTW4_c9vtamEDv9P_0Lj-h4-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545427011</pqid></control><display><type>article</type><title>Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>You, Yingchao ; Duan, Guijiang ; Liu, Rui ; Liu, Taotao ; Huang, Mingcong</creator><contributor>Sahin, Bekir ; Bekir Sahin</contributor><creatorcontrib>You, Yingchao ; Duan, Guijiang ; Liu, Rui ; Liu, Taotao ; Huang, Mingcong ; Sahin, Bekir ; Bekir Sahin</creatorcontrib><description>With the development of smart manufacturing, quality has become an indispensable issue in the manufacturing process. Although there is increasing publication about inspection allocation problems, inspection allocation optimization research considering resource capability is scarce. This paper focuses on the inspection allocation problem with resource constraints in the flexible manufacturing system. Combined with the inspection resource capability model, a bi-objective model is developed to minimize the cost and balance loads of the inspection station. A modified NSGA-II algorithm with adaptive mutation operators is suggested to deal with the proposed model. Finally, a simulation experiment is conducted to test the performance of the modified algorithm and the results demonstrate that modified NSGA-II can obtain acceptable inspection solutions.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/3976576</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Adaptive algorithms ; Dynamic programming ; Flexible manufacturing systems ; Genetic algorithms ; Heuristic ; Inspection ; Linear programming ; Manufacturing ; Mathematical problems ; Mutation ; Normal distribution ; Optimization ; Process planning ; Simulation</subject><ispartof>Mathematical problems in engineering, 2021-06, Vol.2021, p.1-12</ispartof><rights>Copyright © 2021 Yingchao You et al.</rights><rights>Copyright © 2021 Yingchao You et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-640503c03d54affb0622fee97012d13014d9813bb96bb868110c57c6cb67c5343</cites><orcidid>0000-0001-6041-0480 ; 0000-0003-3628-9371 ; 0000-0003-1265-1647 ; 0000-0002-4193-3304 ; 0000-0003-3299-5463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Sahin, Bekir</contributor><contributor>Bekir Sahin</contributor><creatorcontrib>You, Yingchao</creatorcontrib><creatorcontrib>Duan, Guijiang</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Liu, Taotao</creatorcontrib><creatorcontrib>Huang, Mingcong</creatorcontrib><title>Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems</title><title>Mathematical problems in engineering</title><description>With the development of smart manufacturing, quality has become an indispensable issue in the manufacturing process. Although there is increasing publication about inspection allocation problems, inspection allocation optimization research considering resource capability is scarce. This paper focuses on the inspection allocation problem with resource constraints in the flexible manufacturing system. Combined with the inspection resource capability model, a bi-objective model is developed to minimize the cost and balance loads of the inspection station. A modified NSGA-II algorithm with adaptive mutation operators is suggested to deal with the proposed model. Finally, a simulation experiment is conducted to test the performance of the modified algorithm and the results demonstrate that modified NSGA-II can obtain acceptable inspection solutions.</description><subject>Adaptive algorithms</subject><subject>Dynamic programming</subject><subject>Flexible manufacturing systems</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Inspection</subject><subject>Linear programming</subject><subject>Manufacturing</subject><subject>Mathematical problems</subject><subject>Mutation</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Process planning</subject><subject>Simulation</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1Kw0AURoMoWKs7H2DApcbOf5JlLbYGWgtWwV2YTCZ2SjqJmQltfXqnpmtX97tw-C73BMEtgo8IMTbCEKMRSSLOIn4WDBDjJGSIRuc-Q0xDhMnnZXBl7QZ6kqF4EOxTYxslna4NGFdVLcVfXDZOb_VPv-y0W4M3ZeuulQpMamNdK7RxFjwJqwrgkUVd6FL7_LqajcM0BdqAaaX2Oq8UWAjTlUK6rtXmC6wO1qmtvQ4uSlFZdXOaw-Bj-vw-eQnny1k6Gc9DiRPqQk4hg0RCUjAqyjKHHONSqSSCCBeIQESLJEYkzxOe5zGPEYKSRZLLnEeSEUqGwV3f27T1d6esyzb-D-NPZphRRrFvQp566CnZ1ta2qsyaVm9Fe8gQzI5us6Pb7OTW4_c9vtamEDv9P_0Lj-h4-A</recordid><startdate>20210619</startdate><enddate>20210619</enddate><creator>You, Yingchao</creator><creator>Duan, Guijiang</creator><creator>Liu, Rui</creator><creator>Liu, Taotao</creator><creator>Huang, Mingcong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6041-0480</orcidid><orcidid>https://orcid.org/0000-0003-3628-9371</orcidid><orcidid>https://orcid.org/0000-0003-1265-1647</orcidid><orcidid>https://orcid.org/0000-0002-4193-3304</orcidid><orcidid>https://orcid.org/0000-0003-3299-5463</orcidid></search><sort><creationdate>20210619</creationdate><title>Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems</title><author>You, Yingchao ; Duan, Guijiang ; Liu, Rui ; Liu, Taotao ; Huang, Mingcong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-640503c03d54affb0622fee97012d13014d9813bb96bb868110c57c6cb67c5343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Dynamic programming</topic><topic>Flexible manufacturing systems</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Inspection</topic><topic>Linear programming</topic><topic>Manufacturing</topic><topic>Mathematical problems</topic><topic>Mutation</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Process planning</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Yingchao</creatorcontrib><creatorcontrib>Duan, Guijiang</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Liu, Taotao</creatorcontrib><creatorcontrib>Huang, Mingcong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Yingchao</au><au>Duan, Guijiang</au><au>Liu, Rui</au><au>Liu, Taotao</au><au>Huang, Mingcong</au><au>Sahin, Bekir</au><au>Bekir Sahin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-06-19</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>With the development of smart manufacturing, quality has become an indispensable issue in the manufacturing process. Although there is increasing publication about inspection allocation problems, inspection allocation optimization research considering resource capability is scarce. This paper focuses on the inspection allocation problem with resource constraints in the flexible manufacturing system. Combined with the inspection resource capability model, a bi-objective model is developed to minimize the cost and balance loads of the inspection station. A modified NSGA-II algorithm with adaptive mutation operators is suggested to deal with the proposed model. Finally, a simulation experiment is conducted to test the performance of the modified algorithm and the results demonstrate that modified NSGA-II can obtain acceptable inspection solutions.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/3976576</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6041-0480</orcidid><orcidid>https://orcid.org/0000-0003-3628-9371</orcidid><orcidid>https://orcid.org/0000-0003-1265-1647</orcidid><orcidid>https://orcid.org/0000-0002-4193-3304</orcidid><orcidid>https://orcid.org/0000-0003-3299-5463</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021-06, Vol.2021, p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2545427011 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Adaptive algorithms Dynamic programming Flexible manufacturing systems Genetic algorithms Heuristic Inspection Linear programming Manufacturing Mathematical problems Mutation Normal distribution Optimization Process planning Simulation |
title | Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inspection%20Allocation%20Optimization%20with%20Resource%20Constraints%20Based%20on%20Modified%20NSGA-II%20in%20Flexible%20Manufacturing%20Systems&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=You,%20Yingchao&rft.date=2021-06-19&rft.volume=2021&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/3976576&rft_dat=%3Cproquest_cross%3E2545427011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545427011&rft_id=info:pmid/&rfr_iscdi=true |