Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems

With the development of smart manufacturing, quality has become an indispensable issue in the manufacturing process. Although there is increasing publication about inspection allocation problems, inspection allocation optimization research considering resource capability is scarce. This paper focuse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-06, Vol.2021, p.1-12
Hauptverfasser: You, Yingchao, Duan, Guijiang, Liu, Rui, Liu, Taotao, Huang, Mingcong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator You, Yingchao
Duan, Guijiang
Liu, Rui
Liu, Taotao
Huang, Mingcong
description With the development of smart manufacturing, quality has become an indispensable issue in the manufacturing process. Although there is increasing publication about inspection allocation problems, inspection allocation optimization research considering resource capability is scarce. This paper focuses on the inspection allocation problem with resource constraints in the flexible manufacturing system. Combined with the inspection resource capability model, a bi-objective model is developed to minimize the cost and balance loads of the inspection station. A modified NSGA-II algorithm with adaptive mutation operators is suggested to deal with the proposed model. Finally, a simulation experiment is conducted to test the performance of the modified algorithm and the results demonstrate that modified NSGA-II can obtain acceptable inspection solutions.
doi_str_mv 10.1155/2021/3976576
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545427011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545427011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-640503c03d54affb0622fee97012d13014d9813bb96bb868110c57c6cb67c5343</originalsourceid><addsrcrecordid>eNp9kM1Kw0AURoMoWKs7H2DApcbOf5JlLbYGWgtWwV2YTCZ2SjqJmQltfXqnpmtX97tw-C73BMEtgo8IMTbCEKMRSSLOIn4WDBDjJGSIRuc-Q0xDhMnnZXBl7QZ6kqF4EOxTYxslna4NGFdVLcVfXDZOb_VPv-y0W4M3ZeuulQpMamNdK7RxFjwJqwrgkUVd6FL7_LqajcM0BdqAaaX2Oq8UWAjTlUK6rtXmC6wO1qmtvQ4uSlFZdXOaw-Bj-vw-eQnny1k6Gc9DiRPqQk4hg0RCUjAqyjKHHONSqSSCCBeIQESLJEYkzxOe5zGPEYKSRZLLnEeSEUqGwV3f27T1d6esyzb-D-NPZphRRrFvQp566CnZ1ta2qsyaVm9Fe8gQzI5us6Pb7OTW4_c9vtamEDv9P_0Lj-h4-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545427011</pqid></control><display><type>article</type><title>Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>You, Yingchao ; Duan, Guijiang ; Liu, Rui ; Liu, Taotao ; Huang, Mingcong</creator><contributor>Sahin, Bekir ; Bekir Sahin</contributor><creatorcontrib>You, Yingchao ; Duan, Guijiang ; Liu, Rui ; Liu, Taotao ; Huang, Mingcong ; Sahin, Bekir ; Bekir Sahin</creatorcontrib><description>With the development of smart manufacturing, quality has become an indispensable issue in the manufacturing process. Although there is increasing publication about inspection allocation problems, inspection allocation optimization research considering resource capability is scarce. This paper focuses on the inspection allocation problem with resource constraints in the flexible manufacturing system. Combined with the inspection resource capability model, a bi-objective model is developed to minimize the cost and balance loads of the inspection station. A modified NSGA-II algorithm with adaptive mutation operators is suggested to deal with the proposed model. Finally, a simulation experiment is conducted to test the performance of the modified algorithm and the results demonstrate that modified NSGA-II can obtain acceptable inspection solutions.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/3976576</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Adaptive algorithms ; Dynamic programming ; Flexible manufacturing systems ; Genetic algorithms ; Heuristic ; Inspection ; Linear programming ; Manufacturing ; Mathematical problems ; Mutation ; Normal distribution ; Optimization ; Process planning ; Simulation</subject><ispartof>Mathematical problems in engineering, 2021-06, Vol.2021, p.1-12</ispartof><rights>Copyright © 2021 Yingchao You et al.</rights><rights>Copyright © 2021 Yingchao You et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-640503c03d54affb0622fee97012d13014d9813bb96bb868110c57c6cb67c5343</cites><orcidid>0000-0001-6041-0480 ; 0000-0003-3628-9371 ; 0000-0003-1265-1647 ; 0000-0002-4193-3304 ; 0000-0003-3299-5463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Sahin, Bekir</contributor><contributor>Bekir Sahin</contributor><creatorcontrib>You, Yingchao</creatorcontrib><creatorcontrib>Duan, Guijiang</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Liu, Taotao</creatorcontrib><creatorcontrib>Huang, Mingcong</creatorcontrib><title>Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems</title><title>Mathematical problems in engineering</title><description>With the development of smart manufacturing, quality has become an indispensable issue in the manufacturing process. Although there is increasing publication about inspection allocation problems, inspection allocation optimization research considering resource capability is scarce. This paper focuses on the inspection allocation problem with resource constraints in the flexible manufacturing system. Combined with the inspection resource capability model, a bi-objective model is developed to minimize the cost and balance loads of the inspection station. A modified NSGA-II algorithm with adaptive mutation operators is suggested to deal with the proposed model. Finally, a simulation experiment is conducted to test the performance of the modified algorithm and the results demonstrate that modified NSGA-II can obtain acceptable inspection solutions.</description><subject>Adaptive algorithms</subject><subject>Dynamic programming</subject><subject>Flexible manufacturing systems</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Inspection</subject><subject>Linear programming</subject><subject>Manufacturing</subject><subject>Mathematical problems</subject><subject>Mutation</subject><subject>Normal distribution</subject><subject>Optimization</subject><subject>Process planning</subject><subject>Simulation</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1Kw0AURoMoWKs7H2DApcbOf5JlLbYGWgtWwV2YTCZ2SjqJmQltfXqnpmtX97tw-C73BMEtgo8IMTbCEKMRSSLOIn4WDBDjJGSIRuc-Q0xDhMnnZXBl7QZ6kqF4EOxTYxslna4NGFdVLcVfXDZOb_VPv-y0W4M3ZeuulQpMamNdK7RxFjwJqwrgkUVd6FL7_LqajcM0BdqAaaX2Oq8UWAjTlUK6rtXmC6wO1qmtvQ4uSlFZdXOaw-Bj-vw-eQnny1k6Gc9DiRPqQk4hg0RCUjAqyjKHHONSqSSCCBeIQESLJEYkzxOe5zGPEYKSRZLLnEeSEUqGwV3f27T1d6esyzb-D-NPZphRRrFvQp566CnZ1ta2qsyaVm9Fe8gQzI5us6Pb7OTW4_c9vtamEDv9P_0Lj-h4-A</recordid><startdate>20210619</startdate><enddate>20210619</enddate><creator>You, Yingchao</creator><creator>Duan, Guijiang</creator><creator>Liu, Rui</creator><creator>Liu, Taotao</creator><creator>Huang, Mingcong</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6041-0480</orcidid><orcidid>https://orcid.org/0000-0003-3628-9371</orcidid><orcidid>https://orcid.org/0000-0003-1265-1647</orcidid><orcidid>https://orcid.org/0000-0002-4193-3304</orcidid><orcidid>https://orcid.org/0000-0003-3299-5463</orcidid></search><sort><creationdate>20210619</creationdate><title>Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems</title><author>You, Yingchao ; Duan, Guijiang ; Liu, Rui ; Liu, Taotao ; Huang, Mingcong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-640503c03d54affb0622fee97012d13014d9813bb96bb868110c57c6cb67c5343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>Dynamic programming</topic><topic>Flexible manufacturing systems</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Inspection</topic><topic>Linear programming</topic><topic>Manufacturing</topic><topic>Mathematical problems</topic><topic>Mutation</topic><topic>Normal distribution</topic><topic>Optimization</topic><topic>Process planning</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Yingchao</creatorcontrib><creatorcontrib>Duan, Guijiang</creatorcontrib><creatorcontrib>Liu, Rui</creatorcontrib><creatorcontrib>Liu, Taotao</creatorcontrib><creatorcontrib>Huang, Mingcong</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Yingchao</au><au>Duan, Guijiang</au><au>Liu, Rui</au><au>Liu, Taotao</au><au>Huang, Mingcong</au><au>Sahin, Bekir</au><au>Bekir Sahin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-06-19</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>With the development of smart manufacturing, quality has become an indispensable issue in the manufacturing process. Although there is increasing publication about inspection allocation problems, inspection allocation optimization research considering resource capability is scarce. This paper focuses on the inspection allocation problem with resource constraints in the flexible manufacturing system. Combined with the inspection resource capability model, a bi-objective model is developed to minimize the cost and balance loads of the inspection station. A modified NSGA-II algorithm with adaptive mutation operators is suggested to deal with the proposed model. Finally, a simulation experiment is conducted to test the performance of the modified algorithm and the results demonstrate that modified NSGA-II can obtain acceptable inspection solutions.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/3976576</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6041-0480</orcidid><orcidid>https://orcid.org/0000-0003-3628-9371</orcidid><orcidid>https://orcid.org/0000-0003-1265-1647</orcidid><orcidid>https://orcid.org/0000-0002-4193-3304</orcidid><orcidid>https://orcid.org/0000-0003-3299-5463</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021-06, Vol.2021, p.1-12
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2545427011
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Adaptive algorithms
Dynamic programming
Flexible manufacturing systems
Genetic algorithms
Heuristic
Inspection
Linear programming
Manufacturing
Mathematical problems
Mutation
Normal distribution
Optimization
Process planning
Simulation
title Inspection Allocation Optimization with Resource Constraints Based on Modified NSGA-II in Flexible Manufacturing Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inspection%20Allocation%20Optimization%20with%20Resource%20Constraints%20Based%20on%20Modified%20NSGA-II%20in%20Flexible%20Manufacturing%20Systems&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=You,%20Yingchao&rft.date=2021-06-19&rft.volume=2021&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/3976576&rft_dat=%3Cproquest_cross%3E2545427011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545427011&rft_id=info:pmid/&rfr_iscdi=true