Character varieties of higher dimensional representations and splittings of 3-manifolds
In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the SL 2 -character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call essential tribran...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2021, Vol.213 (1), p.433-466 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 1 |
container_start_page | 433 |
container_title | Geometriae dedicata |
container_volume | 213 |
creator | Hara, Takashi Kitayama, Takahiro |
description | In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the
SL
2
-character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call
essential tribranched surfaces
) from ideal points of the
SL
n
-character variety for a natural number
n
greater than or equal to 3. Further we verify that such a branched surface induces a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain 2-dimensional complex of groups. |
doi_str_mv | 10.1007/s10711-020-00590-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545366660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545366660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-7168deed703d8bd71d678b6620a77e270ad312c2efa827a3c4f0ad3ccbb5192a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNOC5-hL0mx2j1L8BwUviseQTd62KdvdNUmFfntjV_DmuzwYZobhR8g1g1sGoO4iA8UYBQ4UQNZADydkxqTitGZldUpmAIuSSiXlObmIcQsAtVJ8Rj6WGxOMTRiKLxM8Jo-xGNpi49ebrDm_wz76oTddEXAMGLFPJmUhFqZ3RRw7n5Lv18eQoDvT-3boXLwkZ63pIl79_jl5f3x4Wz7T1evTy_J-Ra0QZaIqr3OIToFwVeMUc6WqmrLkYJRCrsA4wbjl2JqKKyPsov2RrG0ayWpuxJzcTL1jGD73GJPeDvuQ50bN5UKKMh9kF59cNgwxBmz1GPzOhINmoH8A6gmgzgD1EaA-5JCYQjGb-zWGv-p_Ut9HEXVZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545366660</pqid></control><display><type>article</type><title>Character varieties of higher dimensional representations and splittings of 3-manifolds</title><source>SpringerNature Complete Journals</source><creator>Hara, Takashi ; Kitayama, Takahiro</creator><creatorcontrib>Hara, Takashi ; Kitayama, Takahiro</creatorcontrib><description>In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the
SL
2
-character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call
essential tribranched surfaces
) from ideal points of the
SL
n
-character variety for a natural number
n
greater than or equal to 3. Further we verify that such a branched surface induces a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain 2-dimensional complex of groups.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-020-00590-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2021, Vol.213 (1), p.433-466</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-7168deed703d8bd71d678b6620a77e270ad312c2efa827a3c4f0ad3ccbb5192a3</cites><orcidid>0000-0003-2588-3455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-020-00590-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-020-00590-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hara, Takashi</creatorcontrib><creatorcontrib>Kitayama, Takahiro</creatorcontrib><title>Character varieties of higher dimensional representations and splittings of 3-manifolds</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the
SL
2
-character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call
essential tribranched surfaces
) from ideal points of the
SL
n
-character variety for a natural number
n
greater than or equal to 3. Further we verify that such a branched surface induces a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain 2-dimensional complex of groups.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwNOC5-hL0mx2j1L8BwUviseQTd62KdvdNUmFfntjV_DmuzwYZobhR8g1g1sGoO4iA8UYBQ4UQNZADydkxqTitGZldUpmAIuSSiXlObmIcQsAtVJ8Rj6WGxOMTRiKLxM8Jo-xGNpi49ebrDm_wz76oTddEXAMGLFPJmUhFqZ3RRw7n5Lv18eQoDvT-3boXLwkZ63pIl79_jl5f3x4Wz7T1evTy_J-Ra0QZaIqr3OIToFwVeMUc6WqmrLkYJRCrsA4wbjl2JqKKyPsov2RrG0ayWpuxJzcTL1jGD73GJPeDvuQ50bN5UKKMh9kF59cNgwxBmz1GPzOhINmoH8A6gmgzgD1EaA-5JCYQjGb-zWGv-p_Ut9HEXVZ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hara, Takashi</creator><creator>Kitayama, Takahiro</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2588-3455</orcidid></search><sort><creationdate>2021</creationdate><title>Character varieties of higher dimensional representations and splittings of 3-manifolds</title><author>Hara, Takashi ; Kitayama, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-7168deed703d8bd71d678b6620a77e270ad312c2efa827a3c4f0ad3ccbb5192a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hara, Takashi</creatorcontrib><creatorcontrib>Kitayama, Takahiro</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hara, Takashi</au><au>Kitayama, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Character varieties of higher dimensional representations and splittings of 3-manifolds</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2021</date><risdate>2021</risdate><volume>213</volume><issue>1</issue><spage>433</spage><epage>466</epage><pages>433-466</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the
SL
2
-character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call
essential tribranched surfaces
) from ideal points of the
SL
n
-character variety for a natural number
n
greater than or equal to 3. Further we verify that such a branched surface induces a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain 2-dimensional complex of groups.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-020-00590-y</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-2588-3455</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5755 |
ispartof | Geometriae dedicata, 2021, Vol.213 (1), p.433-466 |
issn | 0046-5755 1572-9168 |
language | eng |
recordid | cdi_proquest_journals_2545366660 |
source | SpringerNature Complete Journals |
subjects | Algebraic Geometry Convex and Discrete Geometry Differential Geometry Hyperbolic Geometry Mathematics Mathematics and Statistics Original Paper Projective Geometry Topology |
title | Character varieties of higher dimensional representations and splittings of 3-manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Character%20varieties%20of%20higher%20dimensional%20representations%20and%20splittings%20of%203-manifolds&rft.jtitle=Geometriae%20dedicata&rft.au=Hara,%20Takashi&rft.date=2021&rft.volume=213&rft.issue=1&rft.spage=433&rft.epage=466&rft.pages=433-466&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-020-00590-y&rft_dat=%3Cproquest_cross%3E2545366660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545366660&rft_id=info:pmid/&rfr_iscdi=true |