Character varieties of higher dimensional representations and splittings of 3-manifolds

In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the SL 2 -character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call essential tribran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2021, Vol.213 (1), p.433-466
Hauptverfasser: Hara, Takashi, Kitayama, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 1
container_start_page 433
container_title Geometriae dedicata
container_volume 213
creator Hara, Takashi
Kitayama, Takahiro
description In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the SL 2 -character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call essential tribranched surfaces ) from ideal points of the SL n -character variety for a natural number  n greater than or equal to 3. Further we verify that such a branched surface induces a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain 2-dimensional complex of groups.
doi_str_mv 10.1007/s10711-020-00590-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545366660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545366660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-7168deed703d8bd71d678b6620a77e270ad312c2efa827a3c4f0ad3ccbb5192a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNOC5-hL0mx2j1L8BwUviseQTd62KdvdNUmFfntjV_DmuzwYZobhR8g1g1sGoO4iA8UYBQ4UQNZADydkxqTitGZldUpmAIuSSiXlObmIcQsAtVJ8Rj6WGxOMTRiKLxM8Jo-xGNpi49ebrDm_wz76oTddEXAMGLFPJmUhFqZ3RRw7n5Lv18eQoDvT-3boXLwkZ63pIl79_jl5f3x4Wz7T1evTy_J-Ra0QZaIqr3OIToFwVeMUc6WqmrLkYJRCrsA4wbjl2JqKKyPsov2RrG0ayWpuxJzcTL1jGD73GJPeDvuQ50bN5UKKMh9kF59cNgwxBmz1GPzOhINmoH8A6gmgzgD1EaA-5JCYQjGb-zWGv-p_Ut9HEXVZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545366660</pqid></control><display><type>article</type><title>Character varieties of higher dimensional representations and splittings of 3-manifolds</title><source>SpringerNature Complete Journals</source><creator>Hara, Takashi ; Kitayama, Takahiro</creator><creatorcontrib>Hara, Takashi ; Kitayama, Takahiro</creatorcontrib><description>In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the SL 2 -character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call essential tribranched surfaces ) from ideal points of the SL n -character variety for a natural number  n greater than or equal to 3. Further we verify that such a branched surface induces a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain 2-dimensional complex of groups.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-020-00590-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2021, Vol.213 (1), p.433-466</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c336t-7168deed703d8bd71d678b6620a77e270ad312c2efa827a3c4f0ad3ccbb5192a3</cites><orcidid>0000-0003-2588-3455</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-020-00590-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-020-00590-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hara, Takashi</creatorcontrib><creatorcontrib>Kitayama, Takahiro</creatorcontrib><title>Character varieties of higher dimensional representations and splittings of 3-manifolds</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the SL 2 -character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call essential tribranched surfaces ) from ideal points of the SL n -character variety for a natural number  n greater than or equal to 3. Further we verify that such a branched surface induces a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain 2-dimensional complex of groups.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEUxIMoWKtfwNOC5-hL0mx2j1L8BwUviseQTd62KdvdNUmFfntjV_DmuzwYZobhR8g1g1sGoO4iA8UYBQ4UQNZADydkxqTitGZldUpmAIuSSiXlObmIcQsAtVJ8Rj6WGxOMTRiKLxM8Jo-xGNpi49ebrDm_wz76oTddEXAMGLFPJmUhFqZ3RRw7n5Lv18eQoDvT-3boXLwkZ63pIl79_jl5f3x4Wz7T1evTy_J-Ra0QZaIqr3OIToFwVeMUc6WqmrLkYJRCrsA4wbjl2JqKKyPsov2RrG0ayWpuxJzcTL1jGD73GJPeDvuQ50bN5UKKMh9kF59cNgwxBmz1GPzOhINmoH8A6gmgzgD1EaA-5JCYQjGb-zWGv-p_Ut9HEXVZ</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Hara, Takashi</creator><creator>Kitayama, Takahiro</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2588-3455</orcidid></search><sort><creationdate>2021</creationdate><title>Character varieties of higher dimensional representations and splittings of 3-manifolds</title><author>Hara, Takashi ; Kitayama, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-7168deed703d8bd71d678b6620a77e270ad312c2efa827a3c4f0ad3ccbb5192a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hara, Takashi</creatorcontrib><creatorcontrib>Kitayama, Takahiro</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hara, Takashi</au><au>Kitayama, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Character varieties of higher dimensional representations and splittings of 3-manifolds</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2021</date><risdate>2021</risdate><volume>213</volume><issue>1</issue><spage>433</spage><epage>466</epage><pages>433-466</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>In 1983 Culler and Shalen established a way to construct essential surfaces in a 3-manifold from ideal points of the SL 2 -character variety associated to the 3-manifold group. We present in this article an analogous construction of certain kinds of branched surfaces (which we call essential tribranched surfaces ) from ideal points of the SL n -character variety for a natural number  n greater than or equal to 3. Further we verify that such a branched surface induces a nontrivial presentation of the 3-manifold group in terms of the fundamental group of a certain 2-dimensional complex of groups.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-020-00590-y</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-2588-3455</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2021, Vol.213 (1), p.433-466
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_2545366660
source SpringerNature Complete Journals
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Hyperbolic Geometry
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
title Character varieties of higher dimensional representations and splittings of 3-manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Character%20varieties%20of%20higher%20dimensional%20representations%20and%20splittings%20of%203-manifolds&rft.jtitle=Geometriae%20dedicata&rft.au=Hara,%20Takashi&rft.date=2021&rft.volume=213&rft.issue=1&rft.spage=433&rft.epage=466&rft.pages=433-466&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-020-00590-y&rft_dat=%3Cproquest_cross%3E2545366660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545366660&rft_id=info:pmid/&rfr_iscdi=true