Qualitative counting closed geodesics

We investigate the geometry of word metrics on fundamental groups of manifolds associated with the generating sets consisting of elements represented by closed geodesics. We ask whether the diameter of such a metric is finite or infinite. The first answer we interpret as an abundance of closed geode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2021-08, Vol.213 (1), p.523-530
Hauptverfasser: Karlhofer, Bastien, Kędra, Jarek, Marcinkowski, Michał, Trost, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 530
container_issue 1
container_start_page 523
container_title Geometriae dedicata
container_volume 213
creator Karlhofer, Bastien
Kędra, Jarek
Marcinkowski, Michał
Trost, Alexander
description We investigate the geometry of word metrics on fundamental groups of manifolds associated with the generating sets consisting of elements represented by closed geodesics. We ask whether the diameter of such a metric is finite or infinite. The first answer we interpret as an abundance of closed geodesics, while the second one as their scarcity. We discuss examples for both cases.
doi_str_mv 10.1007/s10711-021-00595-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545366197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545366197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-bd24f470684551516f86ed9449500a1ed0acae9eefc3dace3f40cb2134a793de3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFVBXEbvzbNZSvEFBRF0HdLkzjClztRkRvDfOzqCOxeXsznfufAxdo5whQD2uiBYRA5iPNBOczxgM9RWcIdmechmAMpwbbU-ZielbAHAWStm7PJ5CLumD33zQYvYDW3ftPUi7rpCaVFTl6g0sZyyoyrsCp395py93t2-rB74-un-cXWz5lGi6vkmCVUpC2aptEaNploaSk4ppwECUoIQAzmiKsoUIslKQdwIlCpYJxPJObuYdve5ex-o9H7bDbkdX3qhlZbGoLNjS0ytmLtSMlV-n5u3kD89gv_W4ScdftThf3R4HCE5QWUstzXlv-l_qC9bfWG2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545366197</pqid></control><display><type>article</type><title>Qualitative counting closed geodesics</title><source>SpringerLink Journals</source><creator>Karlhofer, Bastien ; Kędra, Jarek ; Marcinkowski, Michał ; Trost, Alexander</creator><creatorcontrib>Karlhofer, Bastien ; Kędra, Jarek ; Marcinkowski, Michał ; Trost, Alexander</creatorcontrib><description>We investigate the geometry of word metrics on fundamental groups of manifolds associated with the generating sets consisting of elements represented by closed geodesics. We ask whether the diameter of such a metric is finite or infinite. The first answer we interpret as an abundance of closed geodesics, while the second one as their scarcity. We discuss examples for both cases.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-021-00595-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Geodesy ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2021-08, Vol.213 (1), p.523-530</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-bd24f470684551516f86ed9449500a1ed0acae9eefc3dace3f40cb2134a793de3</cites><orcidid>0000-0002-1599-2482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-021-00595-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-021-00595-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Karlhofer, Bastien</creatorcontrib><creatorcontrib>Kędra, Jarek</creatorcontrib><creatorcontrib>Marcinkowski, Michał</creatorcontrib><creatorcontrib>Trost, Alexander</creatorcontrib><title>Qualitative counting closed geodesics</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>We investigate the geometry of word metrics on fundamental groups of manifolds associated with the generating sets consisting of elements represented by closed geodesics. We ask whether the diameter of such a metric is finite or infinite. The first answer we interpret as an abundance of closed geodesics, while the second one as their scarcity. We discuss examples for both cases.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Geodesy</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFVBXEbvzbNZSvEFBRF0HdLkzjClztRkRvDfOzqCOxeXsznfufAxdo5whQD2uiBYRA5iPNBOczxgM9RWcIdmechmAMpwbbU-ZielbAHAWStm7PJ5CLumD33zQYvYDW3ftPUi7rpCaVFTl6g0sZyyoyrsCp395py93t2-rB74-un-cXWz5lGi6vkmCVUpC2aptEaNploaSk4ppwECUoIQAzmiKsoUIslKQdwIlCpYJxPJObuYdve5ex-o9H7bDbkdX3qhlZbGoLNjS0ytmLtSMlV-n5u3kD89gv_W4ScdftThf3R4HCE5QWUstzXlv-l_qC9bfWG2</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Karlhofer, Bastien</creator><creator>Kędra, Jarek</creator><creator>Marcinkowski, Michał</creator><creator>Trost, Alexander</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1599-2482</orcidid></search><sort><creationdate>20210801</creationdate><title>Qualitative counting closed geodesics</title><author>Karlhofer, Bastien ; Kędra, Jarek ; Marcinkowski, Michał ; Trost, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-bd24f470684551516f86ed9449500a1ed0acae9eefc3dace3f40cb2134a793de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Geodesy</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlhofer, Bastien</creatorcontrib><creatorcontrib>Kędra, Jarek</creatorcontrib><creatorcontrib>Marcinkowski, Michał</creatorcontrib><creatorcontrib>Trost, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlhofer, Bastien</au><au>Kędra, Jarek</au><au>Marcinkowski, Michał</au><au>Trost, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Qualitative counting closed geodesics</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>213</volume><issue>1</issue><spage>523</spage><epage>530</epage><pages>523-530</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>We investigate the geometry of word metrics on fundamental groups of manifolds associated with the generating sets consisting of elements represented by closed geodesics. We ask whether the diameter of such a metric is finite or infinite. The first answer we interpret as an abundance of closed geodesics, while the second one as their scarcity. We discuss examples for both cases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-021-00595-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1599-2482</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2021-08, Vol.213 (1), p.523-530
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_2545366197
source SpringerLink Journals
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Geodesy
Hyperbolic Geometry
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
title Qualitative counting closed geodesics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Qualitative%20counting%20closed%20geodesics&rft.jtitle=Geometriae%20dedicata&rft.au=Karlhofer,%20Bastien&rft.date=2021-08-01&rft.volume=213&rft.issue=1&rft.spage=523&rft.epage=530&rft.pages=523-530&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-021-00595-1&rft_dat=%3Cproquest_cross%3E2545366197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545366197&rft_id=info:pmid/&rfr_iscdi=true