Qualitative counting closed geodesics
We investigate the geometry of word metrics on fundamental groups of manifolds associated with the generating sets consisting of elements represented by closed geodesics. We ask whether the diameter of such a metric is finite or infinite. The first answer we interpret as an abundance of closed geode...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2021-08, Vol.213 (1), p.523-530 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 530 |
---|---|
container_issue | 1 |
container_start_page | 523 |
container_title | Geometriae dedicata |
container_volume | 213 |
creator | Karlhofer, Bastien Kędra, Jarek Marcinkowski, Michał Trost, Alexander |
description | We investigate the geometry of word metrics on fundamental groups of manifolds associated with the generating sets consisting of elements represented by closed geodesics. We ask whether the diameter of such a metric is finite or infinite. The first answer we interpret as an abundance of closed geodesics, while the second one as their scarcity. We discuss examples for both cases. |
doi_str_mv | 10.1007/s10711-021-00595-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545366197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545366197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-bd24f470684551516f86ed9449500a1ed0acae9eefc3dace3f40cb2134a793de3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFVBXEbvzbNZSvEFBRF0HdLkzjClztRkRvDfOzqCOxeXsznfufAxdo5whQD2uiBYRA5iPNBOczxgM9RWcIdmechmAMpwbbU-ZielbAHAWStm7PJ5CLumD33zQYvYDW3ftPUi7rpCaVFTl6g0sZyyoyrsCp395py93t2-rB74-un-cXWz5lGi6vkmCVUpC2aptEaNploaSk4ppwECUoIQAzmiKsoUIslKQdwIlCpYJxPJObuYdve5ex-o9H7bDbkdX3qhlZbGoLNjS0ytmLtSMlV-n5u3kD89gv_W4ScdftThf3R4HCE5QWUstzXlv-l_qC9bfWG2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545366197</pqid></control><display><type>article</type><title>Qualitative counting closed geodesics</title><source>SpringerLink Journals</source><creator>Karlhofer, Bastien ; Kędra, Jarek ; Marcinkowski, Michał ; Trost, Alexander</creator><creatorcontrib>Karlhofer, Bastien ; Kędra, Jarek ; Marcinkowski, Michał ; Trost, Alexander</creatorcontrib><description>We investigate the geometry of word metrics on fundamental groups of manifolds associated with the generating sets consisting of elements represented by closed geodesics. We ask whether the diameter of such a metric is finite or infinite. The first answer we interpret as an abundance of closed geodesics, while the second one as their scarcity. We discuss examples for both cases.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-021-00595-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Geodesy ; Hyperbolic Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2021-08, Vol.213 (1), p.523-530</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-bd24f470684551516f86ed9449500a1ed0acae9eefc3dace3f40cb2134a793de3</cites><orcidid>0000-0002-1599-2482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-021-00595-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-021-00595-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Karlhofer, Bastien</creatorcontrib><creatorcontrib>Kędra, Jarek</creatorcontrib><creatorcontrib>Marcinkowski, Michał</creatorcontrib><creatorcontrib>Trost, Alexander</creatorcontrib><title>Qualitative counting closed geodesics</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>We investigate the geometry of word metrics on fundamental groups of manifolds associated with the generating sets consisting of elements represented by closed geodesics. We ask whether the diameter of such a metric is finite or infinite. The first answer we interpret as an abundance of closed geodesics, while the second one as their scarcity. We discuss examples for both cases.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Geodesy</subject><subject>Hyperbolic Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFVBXEbvzbNZSvEFBRF0HdLkzjClztRkRvDfOzqCOxeXsznfufAxdo5whQD2uiBYRA5iPNBOczxgM9RWcIdmechmAMpwbbU-ZielbAHAWStm7PJ5CLumD33zQYvYDW3ftPUi7rpCaVFTl6g0sZyyoyrsCp395py93t2-rB74-un-cXWz5lGi6vkmCVUpC2aptEaNploaSk4ppwECUoIQAzmiKsoUIslKQdwIlCpYJxPJObuYdve5ex-o9H7bDbkdX3qhlZbGoLNjS0ytmLtSMlV-n5u3kD89gv_W4ScdftThf3R4HCE5QWUstzXlv-l_qC9bfWG2</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Karlhofer, Bastien</creator><creator>Kędra, Jarek</creator><creator>Marcinkowski, Michał</creator><creator>Trost, Alexander</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1599-2482</orcidid></search><sort><creationdate>20210801</creationdate><title>Qualitative counting closed geodesics</title><author>Karlhofer, Bastien ; Kędra, Jarek ; Marcinkowski, Michał ; Trost, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-bd24f470684551516f86ed9449500a1ed0acae9eefc3dace3f40cb2134a793de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Geodesy</topic><topic>Hyperbolic Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlhofer, Bastien</creatorcontrib><creatorcontrib>Kędra, Jarek</creatorcontrib><creatorcontrib>Marcinkowski, Michał</creatorcontrib><creatorcontrib>Trost, Alexander</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlhofer, Bastien</au><au>Kędra, Jarek</au><au>Marcinkowski, Michał</au><au>Trost, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Qualitative counting closed geodesics</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>213</volume><issue>1</issue><spage>523</spage><epage>530</epage><pages>523-530</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>We investigate the geometry of word metrics on fundamental groups of manifolds associated with the generating sets consisting of elements represented by closed geodesics. We ask whether the diameter of such a metric is finite or infinite. The first answer we interpret as an abundance of closed geodesics, while the second one as their scarcity. We discuss examples for both cases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-021-00595-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1599-2482</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5755 |
ispartof | Geometriae dedicata, 2021-08, Vol.213 (1), p.523-530 |
issn | 0046-5755 1572-9168 |
language | eng |
recordid | cdi_proquest_journals_2545366197 |
source | SpringerLink Journals |
subjects | Algebraic Geometry Convex and Discrete Geometry Differential Geometry Geodesy Hyperbolic Geometry Mathematics Mathematics and Statistics Original Paper Projective Geometry Topology |
title | Qualitative counting closed geodesics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Qualitative%20counting%20closed%20geodesics&rft.jtitle=Geometriae%20dedicata&rft.au=Karlhofer,%20Bastien&rft.date=2021-08-01&rft.volume=213&rft.issue=1&rft.spage=523&rft.epage=530&rft.pages=523-530&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-021-00595-1&rft_dat=%3Cproquest_cross%3E2545366197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545366197&rft_id=info:pmid/&rfr_iscdi=true |