Impact of copper (Cu) and iron (Fe) co-doping on structural, optical, magnetic and electrical properties of tin oxide (SnO2) nanoparticles for optoelectronics applications
In this work, pure SnO 2, Sn 0.96 Cu 0.02 Fe 0.02 O 2 and Sn 0.94 Cu 0.02 Fe 0.04 O 2 nanoparticles (NPs) were synthesized via employing simple Co-precipitation method. The prominent peaks of PXRD pattern show that no extra peaks were observed and expose the tetragonal rutile structure of SnO 2 NPs...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2021-06, Vol.32 (12), p.16775-16785 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16785 |
---|---|
container_issue | 12 |
container_start_page | 16775 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Divya, J. Pramothkumar, A. Hilary, H. Jude Leonard Jayanthi, P. Jamila Jobe prabakar, P. C. |
description | In this work, pure SnO
2,
Sn
0.96
Cu
0.02
Fe
0.02
O
2
and Sn
0.94
Cu
0.02
Fe
0.04
O
2
nanoparticles (NPs) were synthesized via employing simple Co-precipitation method. The prominent peaks of PXRD pattern show that no extra peaks were observed and expose the tetragonal rutile structure of SnO
2
NPs without any impurity indicating that Cu
2+
and Fe
3+
ions are successfully substituted to Sn
4+
ion. From UV–Vis DRS spectra, the obtained optical band gap of dopant samples was decreased from 3.20 to 2.84 eV due to increases in Cu–Fe co-dopants. The various functional groups present in the synthesized samples are investigated by FTIR studies. PL spectrum shows the broad emission at 364, 410, 496 and 528 nm for all the synthesized samples, and intensity of emission decreases compared with pure SnO
2
NPs. From SEM images, the aggregated shape, distorted sphere-like structure and foam-like porous structure were observed for the pure SnO
2,
Sn
0.96
Cu
0.02
Fe
0.02
O
2
and Sn
0.94
Cu
0.02
Fe
0.04
O
2
NPs, respectively. VSM analysis exhibits a maximum saturation magnetization (0.003153) for Sn
0.94
Cu
0.02
Fe
0.04
O
2
NPs. In electrical studies, the resistivity of prepared nanoparticles was measured by impedance spectroscopy analysis. The dopants Cu and Fe influence the size of the samples complements and the increase in the electrical conductivity, which reveals the materials can be a potential candidate for optoelectronic and spintronics fabrication devices. |
doi_str_mv | 10.1007/s10854-021-06235-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545289465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545289465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-52114efc4fbd506aab9f4d125dea1cf78f4148a4fadc0a427fd9a24fe5c26ef3</originalsourceid><addsrcrecordid>eNp9kU1LBSEYhSUKun38gVZCm3shSx2dj2VcuhUELWrRTszRizFXTR2o39SfzGmCdq188ZznvOIB4IzgS4Jxc5UIbjlDmBKEa1pxxPbAgvCmQqylL_tggTveIMYpPQRHKb1hjGtWtQvwdb8LUmXoDVQ-BB3hcj2uoHQ9tNE7uNzoVVFQ74N1W1huUo6jymOUwwX0IVs1DTu5dbrMP6AetMpxEmCIvmRmq9O0IVsH_YftNVw-uUe6gk46H2TR1VAcxscp0c-8d1YlKEMYSlK23qUTcGDkkPTp73kMnjc3z-s79PB4e7--fkCqIl1GnBLCtFHMvPYc11K-dob1hPJeS6JM0xpGWCuZkb3CktHG9J2kzGiuaK1NdQzO59jy-PdRpyze_Bhd2SgoL1_YdqzmxUVnl4o-paiNCNHuZPwUBIupEzF3Ikon4qcTwQpUzVAqZrfV8S_6H-obdtWSrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545289465</pqid></control><display><type>article</type><title>Impact of copper (Cu) and iron (Fe) co-doping on structural, optical, magnetic and electrical properties of tin oxide (SnO2) nanoparticles for optoelectronics applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Divya, J. ; Pramothkumar, A. ; Hilary, H. Jude Leonard ; Jayanthi, P. Jamila ; Jobe prabakar, P. C.</creator><creatorcontrib>Divya, J. ; Pramothkumar, A. ; Hilary, H. Jude Leonard ; Jayanthi, P. Jamila ; Jobe prabakar, P. C.</creatorcontrib><description>In this work, pure SnO
2,
Sn
0.96
Cu
0.02
Fe
0.02
O
2
and Sn
0.94
Cu
0.02
Fe
0.04
O
2
nanoparticles (NPs) were synthesized via employing simple Co-precipitation method. The prominent peaks of PXRD pattern show that no extra peaks were observed and expose the tetragonal rutile structure of SnO
2
NPs without any impurity indicating that Cu
2+
and Fe
3+
ions are successfully substituted to Sn
4+
ion. From UV–Vis DRS spectra, the obtained optical band gap of dopant samples was decreased from 3.20 to 2.84 eV due to increases in Cu–Fe co-dopants. The various functional groups present in the synthesized samples are investigated by FTIR studies. PL spectrum shows the broad emission at 364, 410, 496 and 528 nm for all the synthesized samples, and intensity of emission decreases compared with pure SnO
2
NPs. From SEM images, the aggregated shape, distorted sphere-like structure and foam-like porous structure were observed for the pure SnO
2,
Sn
0.96
Cu
0.02
Fe
0.02
O
2
and Sn
0.94
Cu
0.02
Fe
0.04
O
2
NPs, respectively. VSM analysis exhibits a maximum saturation magnetization (0.003153) for Sn
0.94
Cu
0.02
Fe
0.04
O
2
NPs. In electrical studies, the resistivity of prepared nanoparticles was measured by impedance spectroscopy analysis. The dopants Cu and Fe influence the size of the samples complements and the increase in the electrical conductivity, which reveals the materials can be a potential candidate for optoelectronic and spintronics fabrication devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-06235-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Dopants ; Electrical properties ; Electrical resistivity ; Emission analysis ; Functional groups ; Iron ; Magnetic properties ; Magnetic saturation ; Materials Science ; Nanoparticles ; Optical and Electronic Materials ; Optical properties ; Optoelectronic devices ; Spectrum analysis ; Spintronics ; Synthesis ; Tin dioxide ; Tin oxides</subject><ispartof>Journal of materials science. Materials in electronics, 2021-06, Vol.32 (12), p.16775-16785</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-52114efc4fbd506aab9f4d125dea1cf78f4148a4fadc0a427fd9a24fe5c26ef3</citedby><cites>FETCH-LOGICAL-c319t-52114efc4fbd506aab9f4d125dea1cf78f4148a4fadc0a427fd9a24fe5c26ef3</cites><orcidid>0000-0002-0893-9296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-021-06235-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-021-06235-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Divya, J.</creatorcontrib><creatorcontrib>Pramothkumar, A.</creatorcontrib><creatorcontrib>Hilary, H. Jude Leonard</creatorcontrib><creatorcontrib>Jayanthi, P. Jamila</creatorcontrib><creatorcontrib>Jobe prabakar, P. C.</creatorcontrib><title>Impact of copper (Cu) and iron (Fe) co-doping on structural, optical, magnetic and electrical properties of tin oxide (SnO2) nanoparticles for optoelectronics applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>In this work, pure SnO
2,
Sn
0.96
Cu
0.02
Fe
0.02
O
2
and Sn
0.94
Cu
0.02
Fe
0.04
O
2
nanoparticles (NPs) were synthesized via employing simple Co-precipitation method. The prominent peaks of PXRD pattern show that no extra peaks were observed and expose the tetragonal rutile structure of SnO
2
NPs without any impurity indicating that Cu
2+
and Fe
3+
ions are successfully substituted to Sn
4+
ion. From UV–Vis DRS spectra, the obtained optical band gap of dopant samples was decreased from 3.20 to 2.84 eV due to increases in Cu–Fe co-dopants. The various functional groups present in the synthesized samples are investigated by FTIR studies. PL spectrum shows the broad emission at 364, 410, 496 and 528 nm for all the synthesized samples, and intensity of emission decreases compared with pure SnO
2
NPs. From SEM images, the aggregated shape, distorted sphere-like structure and foam-like porous structure were observed for the pure SnO
2,
Sn
0.96
Cu
0.02
Fe
0.02
O
2
and Sn
0.94
Cu
0.02
Fe
0.04
O
2
NPs, respectively. VSM analysis exhibits a maximum saturation magnetization (0.003153) for Sn
0.94
Cu
0.02
Fe
0.04
O
2
NPs. In electrical studies, the resistivity of prepared nanoparticles was measured by impedance spectroscopy analysis. The dopants Cu and Fe influence the size of the samples complements and the increase in the electrical conductivity, which reveals the materials can be a potential candidate for optoelectronic and spintronics fabrication devices.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Dopants</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Emission analysis</subject><subject>Functional groups</subject><subject>Iron</subject><subject>Magnetic properties</subject><subject>Magnetic saturation</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Spectrum analysis</subject><subject>Spintronics</subject><subject>Synthesis</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1LBSEYhSUKun38gVZCm3shSx2dj2VcuhUELWrRTszRizFXTR2o39SfzGmCdq188ZznvOIB4IzgS4Jxc5UIbjlDmBKEa1pxxPbAgvCmQqylL_tggTveIMYpPQRHKb1hjGtWtQvwdb8LUmXoDVQ-BB3hcj2uoHQ9tNE7uNzoVVFQ74N1W1huUo6jymOUwwX0IVs1DTu5dbrMP6AetMpxEmCIvmRmq9O0IVsH_YftNVw-uUe6gk46H2TR1VAcxscp0c-8d1YlKEMYSlK23qUTcGDkkPTp73kMnjc3z-s79PB4e7--fkCqIl1GnBLCtFHMvPYc11K-dob1hPJeS6JM0xpGWCuZkb3CktHG9J2kzGiuaK1NdQzO59jy-PdRpyze_Bhd2SgoL1_YdqzmxUVnl4o-paiNCNHuZPwUBIupEzF3Ikon4qcTwQpUzVAqZrfV8S_6H-obdtWSrw</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Divya, J.</creator><creator>Pramothkumar, A.</creator><creator>Hilary, H. Jude Leonard</creator><creator>Jayanthi, P. Jamila</creator><creator>Jobe prabakar, P. C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0893-9296</orcidid></search><sort><creationdate>20210601</creationdate><title>Impact of copper (Cu) and iron (Fe) co-doping on structural, optical, magnetic and electrical properties of tin oxide (SnO2) nanoparticles for optoelectronics applications</title><author>Divya, J. ; Pramothkumar, A. ; Hilary, H. Jude Leonard ; Jayanthi, P. Jamila ; Jobe prabakar, P. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-52114efc4fbd506aab9f4d125dea1cf78f4148a4fadc0a427fd9a24fe5c26ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Dopants</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Emission analysis</topic><topic>Functional groups</topic><topic>Iron</topic><topic>Magnetic properties</topic><topic>Magnetic saturation</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Spectrum analysis</topic><topic>Spintronics</topic><topic>Synthesis</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Divya, J.</creatorcontrib><creatorcontrib>Pramothkumar, A.</creatorcontrib><creatorcontrib>Hilary, H. Jude Leonard</creatorcontrib><creatorcontrib>Jayanthi, P. Jamila</creatorcontrib><creatorcontrib>Jobe prabakar, P. C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Divya, J.</au><au>Pramothkumar, A.</au><au>Hilary, H. Jude Leonard</au><au>Jayanthi, P. Jamila</au><au>Jobe prabakar, P. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of copper (Cu) and iron (Fe) co-doping on structural, optical, magnetic and electrical properties of tin oxide (SnO2) nanoparticles for optoelectronics applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>32</volume><issue>12</issue><spage>16775</spage><epage>16785</epage><pages>16775-16785</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>In this work, pure SnO
2,
Sn
0.96
Cu
0.02
Fe
0.02
O
2
and Sn
0.94
Cu
0.02
Fe
0.04
O
2
nanoparticles (NPs) were synthesized via employing simple Co-precipitation method. The prominent peaks of PXRD pattern show that no extra peaks were observed and expose the tetragonal rutile structure of SnO
2
NPs without any impurity indicating that Cu
2+
and Fe
3+
ions are successfully substituted to Sn
4+
ion. From UV–Vis DRS spectra, the obtained optical band gap of dopant samples was decreased from 3.20 to 2.84 eV due to increases in Cu–Fe co-dopants. The various functional groups present in the synthesized samples are investigated by FTIR studies. PL spectrum shows the broad emission at 364, 410, 496 and 528 nm for all the synthesized samples, and intensity of emission decreases compared with pure SnO
2
NPs. From SEM images, the aggregated shape, distorted sphere-like structure and foam-like porous structure were observed for the pure SnO
2,
Sn
0.96
Cu
0.02
Fe
0.02
O
2
and Sn
0.94
Cu
0.02
Fe
0.04
O
2
NPs, respectively. VSM analysis exhibits a maximum saturation magnetization (0.003153) for Sn
0.94
Cu
0.02
Fe
0.04
O
2
NPs. In electrical studies, the resistivity of prepared nanoparticles was measured by impedance spectroscopy analysis. The dopants Cu and Fe influence the size of the samples complements and the increase in the electrical conductivity, which reveals the materials can be a potential candidate for optoelectronic and spintronics fabrication devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-06235-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0893-9296</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-06, Vol.32 (12), p.16775-16785 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2545289465 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Copper Dopants Electrical properties Electrical resistivity Emission analysis Functional groups Iron Magnetic properties Magnetic saturation Materials Science Nanoparticles Optical and Electronic Materials Optical properties Optoelectronic devices Spectrum analysis Spintronics Synthesis Tin dioxide Tin oxides |
title | Impact of copper (Cu) and iron (Fe) co-doping on structural, optical, magnetic and electrical properties of tin oxide (SnO2) nanoparticles for optoelectronics applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20copper%20(Cu)%20and%20iron%20(Fe)%20co-doping%20on%20structural,%20optical,%20magnetic%20and%20electrical%20properties%20of%20tin%20oxide%20(SnO2)%20nanoparticles%20for%20optoelectronics%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Divya,%20J.&rft.date=2021-06-01&rft.volume=32&rft.issue=12&rft.spage=16775&rft.epage=16785&rft.pages=16775-16785&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-06235-4&rft_dat=%3Cproquest_cross%3E2545289465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545289465&rft_id=info:pmid/&rfr_iscdi=true |