Thermal Oxidation and SILAR Method to Prepare CuO/CdS Composite Nanostructure and Its Enhanced Photocatalytic Properties

In this study, a series of CuO/CdS composites were synthesized by thermal oxidation and successive ionic layer adsorption and reaction (SILAR). The as-prepared CuO/CdS composites were investigated by x-ray diffraction (XRD), field emission high-resolution scanning electron microscopy (FESEM) and ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2021-08, Vol.50 (8), p.4762-4769
Hauptverfasser: Yang, Yuxiao, Li, Jiangchun, Jiang, You, Wang, Boyou, Zhang, Yubo, Wang, Tinglan, Xiong, Xiaobo, Wang, Yongqian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, a series of CuO/CdS composites were synthesized by thermal oxidation and successive ionic layer adsorption and reaction (SILAR). The as-prepared CuO/CdS composites were investigated by x-ray diffraction (XRD), field emission high-resolution scanning electron microscopy (FESEM) and energy-dispersive spectrometry. Their photocatalytic activity was investigated by monitoring the degradation of methylene blue (MB) under ultraviolet and visible light irradiation. The XRD pattern indicated that the precursor was cubic-phase CuO and Cu 2 O. FESEM results indicate that changes in annealing time and temperature have an effect on morphology, but the nanowire structures are preserved. The growth mechanism of the CuO nanowires is discussed in detail. Furthermore, the photocatalytic degradation rate of the MB, determined using an ultraviolet-visible spectrophotometer (UV-vis, UV-2600, Shimadzu), indicates that CdS can significantly improve the absorption of visible light from the sun.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-021-08977-7