Real-linear isometries between certain subspaces of continuous functions

In this paper we first consider a real-linear isometry T from a certain subspace A of C ( X ) (endowed with supremum norm) into C ( Y ) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X . The result is improved for the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Central European journal of mathematics 2013-11, Vol.11 (11), p.2034-2043
Hauptverfasser: Jamshidi, Arya, Sady, Fereshteh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2043
container_issue 11
container_start_page 2034
container_title Central European journal of mathematics
container_volume 11
creator Jamshidi, Arya
Sady, Fereshteh
description In this paper we first consider a real-linear isometry T from a certain subspace A of C ( X ) (endowed with supremum norm) into C ( Y ) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X . The result is improved for the case where T ( A ) is, in addition, a complex subspace of C ( Y ). We also give a similar description for the case where A is a function space on X and the range of T is a real subspace of C ( Y ) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.
doi_str_mv 10.2478/s11533-013-0303-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545267298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545267298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-adba2d753cb6c138c6507b7e7a77ccf658c31aa1848a6c2db2eb4cf52fc93b483</originalsourceid><addsrcrecordid>eNqNUMtKAzEUDaJgfXyAuwHX0byTLktRKxQE0XVIMpkypU1qkqG0X2_KCK4EL1zugXsecAC4w-iBMKkeM8acUohwXYooPJ6BCRaMQSqwOK9YTTnESLJLcJXzGiGCFMYTsHj3ZgM3ffAmNX2OW19S73Njfdl7HxrnUzF9aPJg8864-old42IofRjikJtuCK70MeQbcNGZTfa3P_cafD4_fcwXcPn28jqfLaFjWBZoWmtIKzl1VjhMlRMcSSu9NFI61wmuHMXGYMWUEY60lnjLXMdJ56bUMkWvwf3ou0vxa_C56HUcUqiRmnDGiZBkemLhkeVSzDn5Tu9SvzXpoDHSp8L0WJiuhelTYfpYNbNRszeb4lPrV2k4VPAb8KcW1yGIsupBRo9c88LqX2L6DX0VhIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545267298</pqid></control><display><type>article</type><title>Real-linear isometries between certain subspaces of continuous functions</title><source>De Gruyter Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Jamshidi, Arya ; Sady, Fereshteh</creator><creatorcontrib>Jamshidi, Arya ; Sady, Fereshteh</creatorcontrib><description>In this paper we first consider a real-linear isometry T from a certain subspace A of C ( X ) (endowed with supremum norm) into C ( Y ) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X . The result is improved for the case where T ( A ) is, in addition, a complex subspace of C ( Y ). We also give a similar description for the case where A is a function space on X and the range of T is a real subspace of C ( Y ) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.</description><identifier>ISSN: 1895-1074</identifier><identifier>ISSN: 2391-5455</identifier><identifier>EISSN: 1644-3616</identifier><identifier>EISSN: 2391-5455</identifier><identifier>DOI: 10.2478/s11533-013-0303-z</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>46J10 ; 46J20 ; 47B48 ; Algebra ; Choquet boundary ; Continuity (mathematics) ; Function space ; Geometry ; Lie Groups ; Lipschitz space ; Mathematics ; Mathematics and Statistics ; Metric space ; Number Theory ; Probability Theory and Stochastic Processes ; Real-linear isometry ; Research Article ; Subspaces ; Topological Groups ; Uniform algebra</subject><ispartof>Central European journal of mathematics, 2013-11, Vol.11 (11), p.2034-2043</ispartof><rights>Versita Warsaw and Springer-Verlag Wien 2013</rights><rights>2013. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-adba2d753cb6c138c6507b7e7a77ccf658c31aa1848a6c2db2eb4cf52fc93b483</citedby><cites>FETCH-LOGICAL-c417t-adba2d753cb6c138c6507b7e7a77ccf658c31aa1848a6c2db2eb4cf52fc93b483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.2478/s11533-013-0303-z/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.2478/s11533-013-0303-z/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,66909,68693</link.rule.ids></links><search><creatorcontrib>Jamshidi, Arya</creatorcontrib><creatorcontrib>Sady, Fereshteh</creatorcontrib><title>Real-linear isometries between certain subspaces of continuous functions</title><title>Central European journal of mathematics</title><addtitle>centr.eur.j.math</addtitle><description>In this paper we first consider a real-linear isometry T from a certain subspace A of C ( X ) (endowed with supremum norm) into C ( Y ) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X . The result is improved for the case where T ( A ) is, in addition, a complex subspace of C ( Y ). We also give a similar description for the case where A is a function space on X and the range of T is a real subspace of C ( Y ) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.</description><subject>46J10</subject><subject>46J20</subject><subject>47B48</subject><subject>Algebra</subject><subject>Choquet boundary</subject><subject>Continuity (mathematics)</subject><subject>Function space</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Lipschitz space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Number Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Real-linear isometry</subject><subject>Research Article</subject><subject>Subspaces</subject><subject>Topological Groups</subject><subject>Uniform algebra</subject><issn>1895-1074</issn><issn>2391-5455</issn><issn>1644-3616</issn><issn>2391-5455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUMtKAzEUDaJgfXyAuwHX0byTLktRKxQE0XVIMpkypU1qkqG0X2_KCK4EL1zugXsecAC4w-iBMKkeM8acUohwXYooPJ6BCRaMQSqwOK9YTTnESLJLcJXzGiGCFMYTsHj3ZgM3ffAmNX2OW19S73Njfdl7HxrnUzF9aPJg8864-old42IofRjikJtuCK70MeQbcNGZTfa3P_cafD4_fcwXcPn28jqfLaFjWBZoWmtIKzl1VjhMlRMcSSu9NFI61wmuHMXGYMWUEY60lnjLXMdJ56bUMkWvwf3ou0vxa_C56HUcUqiRmnDGiZBkemLhkeVSzDn5Tu9SvzXpoDHSp8L0WJiuhelTYfpYNbNRszeb4lPrV2k4VPAb8KcW1yGIsupBRo9c88LqX2L6DX0VhIA</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Jamshidi, Arya</creator><creator>Sady, Fereshteh</creator><general>Springer Vienna</general><general>Versita</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20131101</creationdate><title>Real-linear isometries between certain subspaces of continuous functions</title><author>Jamshidi, Arya ; Sady, Fereshteh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-adba2d753cb6c138c6507b7e7a77ccf658c31aa1848a6c2db2eb4cf52fc93b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>46J10</topic><topic>46J20</topic><topic>47B48</topic><topic>Algebra</topic><topic>Choquet boundary</topic><topic>Continuity (mathematics)</topic><topic>Function space</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Lipschitz space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Number Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Real-linear isometry</topic><topic>Research Article</topic><topic>Subspaces</topic><topic>Topological Groups</topic><topic>Uniform algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamshidi, Arya</creatorcontrib><creatorcontrib>Sady, Fereshteh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Central European journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamshidi, Arya</au><au>Sady, Fereshteh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-linear isometries between certain subspaces of continuous functions</atitle><jtitle>Central European journal of mathematics</jtitle><stitle>centr.eur.j.math</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>11</volume><issue>11</issue><spage>2034</spage><epage>2043</epage><pages>2034-2043</pages><issn>1895-1074</issn><issn>2391-5455</issn><eissn>1644-3616</eissn><eissn>2391-5455</eissn><abstract>In this paper we first consider a real-linear isometry T from a certain subspace A of C ( X ) (endowed with supremum norm) into C ( Y ) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X . The result is improved for the case where T ( A ) is, in addition, a complex subspace of C ( Y ). We also give a similar description for the case where A is a function space on X and the range of T is a real subspace of C ( Y ) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.2478/s11533-013-0303-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1895-1074
ispartof Central European journal of mathematics, 2013-11, Vol.11 (11), p.2034-2043
issn 1895-1074
2391-5455
1644-3616
2391-5455
language eng
recordid cdi_proquest_journals_2545267298
source De Gruyter Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects 46J10
46J20
47B48
Algebra
Choquet boundary
Continuity (mathematics)
Function space
Geometry
Lie Groups
Lipschitz space
Mathematics
Mathematics and Statistics
Metric space
Number Theory
Probability Theory and Stochastic Processes
Real-linear isometry
Research Article
Subspaces
Topological Groups
Uniform algebra
title Real-linear isometries between certain subspaces of continuous functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-linear%20isometries%20between%20certain%20subspaces%20of%20continuous%20functions&rft.jtitle=Central%20European%20journal%20of%20mathematics&rft.au=Jamshidi,%20Arya&rft.date=2013-11-01&rft.volume=11&rft.issue=11&rft.spage=2034&rft.epage=2043&rft.pages=2034-2043&rft.issn=1895-1074&rft.eissn=1644-3616&rft_id=info:doi/10.2478/s11533-013-0303-z&rft_dat=%3Cproquest_cross%3E2545267298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545267298&rft_id=info:pmid/&rfr_iscdi=true