Real-linear isometries between certain subspaces of continuous functions
In this paper we first consider a real-linear isometry T from a certain subspace A of C ( X ) (endowed with supremum norm) into C ( Y ) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X . The result is improved for the c...
Gespeichert in:
Veröffentlicht in: | Central European journal of mathematics 2013-11, Vol.11 (11), p.2034-2043 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2043 |
---|---|
container_issue | 11 |
container_start_page | 2034 |
container_title | Central European journal of mathematics |
container_volume | 11 |
creator | Jamshidi, Arya Sady, Fereshteh |
description | In this paper we first consider a real-linear isometry
T
from a certain subspace
A
of
C
(
X
) (endowed with supremum norm) into
C
(
Y
) where
X
and
Y
are compact Hausdorff spaces and give a result concerning the description of
T
whenever
A
is a uniform algebra on
X
. The result is improved for the case where
T
(
A
) is, in addition, a complex subspace of
C
(
Y
). We also give a similar description for the case where
A
is a function space on
X
and the range of
T
is a real subspace of
C
(
Y
) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm. |
doi_str_mv | 10.2478/s11533-013-0303-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545267298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545267298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-adba2d753cb6c138c6507b7e7a77ccf658c31aa1848a6c2db2eb4cf52fc93b483</originalsourceid><addsrcrecordid>eNqNUMtKAzEUDaJgfXyAuwHX0byTLktRKxQE0XVIMpkypU1qkqG0X2_KCK4EL1zugXsecAC4w-iBMKkeM8acUohwXYooPJ6BCRaMQSqwOK9YTTnESLJLcJXzGiGCFMYTsHj3ZgM3ffAmNX2OW19S73Njfdl7HxrnUzF9aPJg8864-old42IofRjikJtuCK70MeQbcNGZTfa3P_cafD4_fcwXcPn28jqfLaFjWBZoWmtIKzl1VjhMlRMcSSu9NFI61wmuHMXGYMWUEY60lnjLXMdJ56bUMkWvwf3ou0vxa_C56HUcUqiRmnDGiZBkemLhkeVSzDn5Tu9SvzXpoDHSp8L0WJiuhelTYfpYNbNRszeb4lPrV2k4VPAb8KcW1yGIsupBRo9c88LqX2L6DX0VhIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545267298</pqid></control><display><type>article</type><title>Real-linear isometries between certain subspaces of continuous functions</title><source>De Gruyter Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Jamshidi, Arya ; Sady, Fereshteh</creator><creatorcontrib>Jamshidi, Arya ; Sady, Fereshteh</creatorcontrib><description>In this paper we first consider a real-linear isometry
T
from a certain subspace
A
of
C
(
X
) (endowed with supremum norm) into
C
(
Y
) where
X
and
Y
are compact Hausdorff spaces and give a result concerning the description of
T
whenever
A
is a uniform algebra on
X
. The result is improved for the case where
T
(
A
) is, in addition, a complex subspace of
C
(
Y
). We also give a similar description for the case where
A
is a function space on
X
and the range of
T
is a real subspace of
C
(
Y
) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.</description><identifier>ISSN: 1895-1074</identifier><identifier>ISSN: 2391-5455</identifier><identifier>EISSN: 1644-3616</identifier><identifier>EISSN: 2391-5455</identifier><identifier>DOI: 10.2478/s11533-013-0303-z</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>46J10 ; 46J20 ; 47B48 ; Algebra ; Choquet boundary ; Continuity (mathematics) ; Function space ; Geometry ; Lie Groups ; Lipschitz space ; Mathematics ; Mathematics and Statistics ; Metric space ; Number Theory ; Probability Theory and Stochastic Processes ; Real-linear isometry ; Research Article ; Subspaces ; Topological Groups ; Uniform algebra</subject><ispartof>Central European journal of mathematics, 2013-11, Vol.11 (11), p.2034-2043</ispartof><rights>Versita Warsaw and Springer-Verlag Wien 2013</rights><rights>2013. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-adba2d753cb6c138c6507b7e7a77ccf658c31aa1848a6c2db2eb4cf52fc93b483</citedby><cites>FETCH-LOGICAL-c417t-adba2d753cb6c138c6507b7e7a77ccf658c31aa1848a6c2db2eb4cf52fc93b483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.2478/s11533-013-0303-z/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.2478/s11533-013-0303-z/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27907,27908,66909,68693</link.rule.ids></links><search><creatorcontrib>Jamshidi, Arya</creatorcontrib><creatorcontrib>Sady, Fereshteh</creatorcontrib><title>Real-linear isometries between certain subspaces of continuous functions</title><title>Central European journal of mathematics</title><addtitle>centr.eur.j.math</addtitle><description>In this paper we first consider a real-linear isometry
T
from a certain subspace
A
of
C
(
X
) (endowed with supremum norm) into
C
(
Y
) where
X
and
Y
are compact Hausdorff spaces and give a result concerning the description of
T
whenever
A
is a uniform algebra on
X
. The result is improved for the case where
T
(
A
) is, in addition, a complex subspace of
C
(
Y
). We also give a similar description for the case where
A
is a function space on
X
and the range of
T
is a real subspace of
C
(
Y
) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.</description><subject>46J10</subject><subject>46J20</subject><subject>47B48</subject><subject>Algebra</subject><subject>Choquet boundary</subject><subject>Continuity (mathematics)</subject><subject>Function space</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Lipschitz space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Metric space</subject><subject>Number Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Real-linear isometry</subject><subject>Research Article</subject><subject>Subspaces</subject><subject>Topological Groups</subject><subject>Uniform algebra</subject><issn>1895-1074</issn><issn>2391-5455</issn><issn>1644-3616</issn><issn>2391-5455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUMtKAzEUDaJgfXyAuwHX0byTLktRKxQE0XVIMpkypU1qkqG0X2_KCK4EL1zugXsecAC4w-iBMKkeM8acUohwXYooPJ6BCRaMQSqwOK9YTTnESLJLcJXzGiGCFMYTsHj3ZgM3ffAmNX2OW19S73Njfdl7HxrnUzF9aPJg8864-old42IofRjikJtuCK70MeQbcNGZTfa3P_cafD4_fcwXcPn28jqfLaFjWBZoWmtIKzl1VjhMlRMcSSu9NFI61wmuHMXGYMWUEY60lnjLXMdJ56bUMkWvwf3ou0vxa_C56HUcUqiRmnDGiZBkemLhkeVSzDn5Tu9SvzXpoDHSp8L0WJiuhelTYfpYNbNRszeb4lPrV2k4VPAb8KcW1yGIsupBRo9c88LqX2L6DX0VhIA</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Jamshidi, Arya</creator><creator>Sady, Fereshteh</creator><general>Springer Vienna</general><general>Versita</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20131101</creationdate><title>Real-linear isometries between certain subspaces of continuous functions</title><author>Jamshidi, Arya ; Sady, Fereshteh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-adba2d753cb6c138c6507b7e7a77ccf658c31aa1848a6c2db2eb4cf52fc93b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>46J10</topic><topic>46J20</topic><topic>47B48</topic><topic>Algebra</topic><topic>Choquet boundary</topic><topic>Continuity (mathematics)</topic><topic>Function space</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Lipschitz space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Metric space</topic><topic>Number Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Real-linear isometry</topic><topic>Research Article</topic><topic>Subspaces</topic><topic>Topological Groups</topic><topic>Uniform algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamshidi, Arya</creatorcontrib><creatorcontrib>Sady, Fereshteh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Central European journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamshidi, Arya</au><au>Sady, Fereshteh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-linear isometries between certain subspaces of continuous functions</atitle><jtitle>Central European journal of mathematics</jtitle><stitle>centr.eur.j.math</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>11</volume><issue>11</issue><spage>2034</spage><epage>2043</epage><pages>2034-2043</pages><issn>1895-1074</issn><issn>2391-5455</issn><eissn>1644-3616</eissn><eissn>2391-5455</eissn><abstract>In this paper we first consider a real-linear isometry
T
from a certain subspace
A
of
C
(
X
) (endowed with supremum norm) into
C
(
Y
) where
X
and
Y
are compact Hausdorff spaces and give a result concerning the description of
T
whenever
A
is a uniform algebra on
X
. The result is improved for the case where
T
(
A
) is, in addition, a complex subspace of
C
(
Y
). We also give a similar description for the case where
A
is a function space on
X
and the range of
T
is a real subspace of
C
(
Y
) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.2478/s11533-013-0303-z</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1895-1074 |
ispartof | Central European journal of mathematics, 2013-11, Vol.11 (11), p.2034-2043 |
issn | 1895-1074 2391-5455 1644-3616 2391-5455 |
language | eng |
recordid | cdi_proquest_journals_2545267298 |
source | De Gruyter Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | 46J10 46J20 47B48 Algebra Choquet boundary Continuity (mathematics) Function space Geometry Lie Groups Lipschitz space Mathematics Mathematics and Statistics Metric space Number Theory Probability Theory and Stochastic Processes Real-linear isometry Research Article Subspaces Topological Groups Uniform algebra |
title | Real-linear isometries between certain subspaces of continuous functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-linear%20isometries%20between%20certain%20subspaces%20of%20continuous%20functions&rft.jtitle=Central%20European%20journal%20of%20mathematics&rft.au=Jamshidi,%20Arya&rft.date=2013-11-01&rft.volume=11&rft.issue=11&rft.spage=2034&rft.epage=2043&rft.pages=2034-2043&rft.issn=1895-1074&rft.eissn=1644-3616&rft_id=info:doi/10.2478/s11533-013-0303-z&rft_dat=%3Cproquest_cross%3E2545267298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545267298&rft_id=info:pmid/&rfr_iscdi=true |