Real-linear isometries between certain subspaces of continuous functions

In this paper we first consider a real-linear isometry T from a certain subspace A of C ( X ) (endowed with supremum norm) into C ( Y ) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X . The result is improved for the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Central European journal of mathematics 2013-11, Vol.11 (11), p.2034-2043
Hauptverfasser: Jamshidi, Arya, Sady, Fereshteh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we first consider a real-linear isometry T from a certain subspace A of C ( X ) (endowed with supremum norm) into C ( Y ) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X . The result is improved for the case where T ( A ) is, in addition, a complex subspace of C ( Y ). We also give a similar description for the case where A is a function space on X and the range of T is a real subspace of C ( Y ) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm.
ISSN:1895-1074
2391-5455
1644-3616
2391-5455
DOI:10.2478/s11533-013-0303-z