Real-linear isometries between certain subspaces of continuous functions
In this paper we first consider a real-linear isometry T from a certain subspace A of C ( X ) (endowed with supremum norm) into C ( Y ) where X and Y are compact Hausdorff spaces and give a result concerning the description of T whenever A is a uniform algebra on X . The result is improved for the c...
Gespeichert in:
Veröffentlicht in: | Central European journal of mathematics 2013-11, Vol.11 (11), p.2034-2043 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we first consider a real-linear isometry
T
from a certain subspace
A
of
C
(
X
) (endowed with supremum norm) into
C
(
Y
) where
X
and
Y
are compact Hausdorff spaces and give a result concerning the description of
T
whenever
A
is a uniform algebra on
X
. The result is improved for the case where
T
(
A
) is, in addition, a complex subspace of
C
(
Y
). We also give a similar description for the case where
A
is a function space on
X
and the range of
T
is a real subspace of
C
(
Y
) satisfying a ceratin separating property. Next similar results are obtained for real-linear isometries between spaces of Lipschitz functions on compact metric spaces endowed with a certain complete norm. |
---|---|
ISSN: | 1895-1074 2391-5455 1644-3616 2391-5455 |
DOI: | 10.2478/s11533-013-0303-z |