Constructing illoyal algebra-valued models of set theory

An algebra-valued model of set theory is called loyal to its algebra if the model and its algebra have the same propositional logic; it is called faithful if all elements of the algebra are truth values of a sentence of the language of set theory in the model. We observe that non-trivial automorphis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 2021-08, Vol.82 (3), Article 46
Hauptverfasser: Löwe, Benedikt, Paßmann, Robert, Tarafder, Sourav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Algebra universalis
container_volume 82
creator Löwe, Benedikt
Paßmann, Robert
Tarafder, Sourav
description An algebra-valued model of set theory is called loyal to its algebra if the model and its algebra have the same propositional logic; it is called faithful if all elements of the algebra are truth values of a sentence of the language of set theory in the model. We observe that non-trivial automorphisms of the algebra result in models that are not faithful and apply this to construct three classes of illoyal models: tail stretches, transposition twists, and maximal twists.
doi_str_mv 10.1007/s00012-021-00735-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545240043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545240043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-7d6567f79641b91e5ad6f465964c83bd0e6145c9a8dce514315c68139775d26a3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62hunpOlFF9QcKPrkCaZ2pJOajIj9N-bOoI7V5fD_c653IPQNZBbIETdFUIIUEwo4CqZwPwEzYBTglsNcIpmdU-xoJyco4tStkdaaTFD7SL1ZcijGzb9utnEmA42Njauwypb_GXjGHyzSz7E0qSuKWFoho-Q8uESnXU2lnD1O-fo_fHhbfGMl69PL4v7JXZUswErL4VUndKSw0pDENbLjktRtWvZypMggQunbetdEMAZCCdbYFop4am0bI5uptx9Tp9jKIPZpjH39aShgh8_IpxVik6Uy6mUHDqzz5udzQcDxBwbMlNDpjZkfhoyvJrYZCoV7tch_0X_4_oGY6lnJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545240043</pqid></control><display><type>article</type><title>Constructing illoyal algebra-valued models of set theory</title><source>SpringerLink Journals - AutoHoldings</source><creator>Löwe, Benedikt ; Paßmann, Robert ; Tarafder, Sourav</creator><creatorcontrib>Löwe, Benedikt ; Paßmann, Robert ; Tarafder, Sourav</creatorcontrib><description>An algebra-valued model of set theory is called loyal to its algebra if the model and its algebra have the same propositional logic; it is called faithful if all elements of the algebra are truth values of a sentence of the language of set theory in the model. We observe that non-trivial automorphisms of the algebra result in models that are not faithful and apply this to construct three classes of illoyal models: tail stretches, transposition twists, and maximal twists.</description><identifier>ISSN: 0002-5240</identifier><identifier>EISSN: 1420-8911</identifier><identifier>DOI: 10.1007/s00012-021-00735-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Automorphisms ; Mathematics ; Mathematics and Statistics ; Set theory</subject><ispartof>Algebra universalis, 2021-08, Vol.82 (3), Article 46</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-7d6567f79641b91e5ad6f465964c83bd0e6145c9a8dce514315c68139775d26a3</citedby><cites>FETCH-LOGICAL-c293t-7d6567f79641b91e5ad6f465964c83bd0e6145c9a8dce514315c68139775d26a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00012-021-00735-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00012-021-00735-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Löwe, Benedikt</creatorcontrib><creatorcontrib>Paßmann, Robert</creatorcontrib><creatorcontrib>Tarafder, Sourav</creatorcontrib><title>Constructing illoyal algebra-valued models of set theory</title><title>Algebra universalis</title><addtitle>Algebra Univers</addtitle><description>An algebra-valued model of set theory is called loyal to its algebra if the model and its algebra have the same propositional logic; it is called faithful if all elements of the algebra are truth values of a sentence of the language of set theory in the model. We observe that non-trivial automorphisms of the algebra result in models that are not faithful and apply this to construct three classes of illoyal models: tail stretches, transposition twists, and maximal twists.</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Set theory</subject><issn>0002-5240</issn><issn>1420-8911</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62hunpOlFF9QcKPrkCaZ2pJOajIj9N-bOoI7V5fD_c653IPQNZBbIETdFUIIUEwo4CqZwPwEzYBTglsNcIpmdU-xoJyco4tStkdaaTFD7SL1ZcijGzb9utnEmA42Njauwypb_GXjGHyzSz7E0qSuKWFoho-Q8uESnXU2lnD1O-fo_fHhbfGMl69PL4v7JXZUswErL4VUndKSw0pDENbLjktRtWvZypMggQunbetdEMAZCCdbYFop4am0bI5uptx9Tp9jKIPZpjH39aShgh8_IpxVik6Uy6mUHDqzz5udzQcDxBwbMlNDpjZkfhoyvJrYZCoV7tch_0X_4_oGY6lnJA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Löwe, Benedikt</creator><creator>Paßmann, Robert</creator><creator>Tarafder, Sourav</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>Constructing illoyal algebra-valued models of set theory</title><author>Löwe, Benedikt ; Paßmann, Robert ; Tarafder, Sourav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-7d6567f79641b91e5ad6f465964c83bd0e6145c9a8dce514315c68139775d26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Löwe, Benedikt</creatorcontrib><creatorcontrib>Paßmann, Robert</creatorcontrib><creatorcontrib>Tarafder, Sourav</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Algebra universalis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Löwe, Benedikt</au><au>Paßmann, Robert</au><au>Tarafder, Sourav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing illoyal algebra-valued models of set theory</atitle><jtitle>Algebra universalis</jtitle><stitle>Algebra Univers</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>82</volume><issue>3</issue><artnum>46</artnum><issn>0002-5240</issn><eissn>1420-8911</eissn><abstract>An algebra-valued model of set theory is called loyal to its algebra if the model and its algebra have the same propositional logic; it is called faithful if all elements of the algebra are truth values of a sentence of the language of set theory in the model. We observe that non-trivial automorphisms of the algebra result in models that are not faithful and apply this to construct three classes of illoyal models: tail stretches, transposition twists, and maximal twists.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00012-021-00735-4</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-5240
ispartof Algebra universalis, 2021-08, Vol.82 (3), Article 46
issn 0002-5240
1420-8911
language eng
recordid cdi_proquest_journals_2545240043
source SpringerLink Journals - AutoHoldings
subjects Algebra
Automorphisms
Mathematics
Mathematics and Statistics
Set theory
title Constructing illoyal algebra-valued models of set theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20illoyal%20algebra-valued%20models%20of%20set%20theory&rft.jtitle=Algebra%20universalis&rft.au=L%C3%B6we,%20Benedikt&rft.date=2021-08-01&rft.volume=82&rft.issue=3&rft.artnum=46&rft.issn=0002-5240&rft.eissn=1420-8911&rft_id=info:doi/10.1007/s00012-021-00735-4&rft_dat=%3Cproquest_cross%3E2545240043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545240043&rft_id=info:pmid/&rfr_iscdi=true