Certification of linear closed-loop controllers using the ν-gap metric and the generalized stability margin

In almost all mechatronic devices, safety is a fundamental requirement. Unpredicted system behavior resultant from control instability may potentially damage objects or even harm human users. To certify that the system will remain stable under predefined conditions is not only desirable but mandator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2021-07, Vol.43 (7), Article 366
Hauptverfasser: Okle, Jan, Noppeney, Victor Tamassia, Boaventura, Thiago
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 43
creator Okle, Jan
Noppeney, Victor Tamassia
Boaventura, Thiago
description In almost all mechatronic devices, safety is a fundamental requirement. Unpredicted system behavior resultant from control instability may potentially damage objects or even harm human users. To certify that the system will remain stable under predefined conditions is not only desirable but mandatory for systems like jet engines and wearable robots (e.g., robotic prosthesis and exoskeleton robots). The certification of control algorithms is already a standard procedure in some engineering fields, such as aviation. In robotics, however, a certification procedure is not yet traditionally incorporated in the control design. To fill this gap is an essential step towards making robots, especially those that closely interact with human beings, largely available on the market and endorsed by the public in general. This paper uses the ν -gap metric and the generalized stability margin to assess the stability of a closed-loop linear system, accounting for differences between plants. A novel iterative certification procedure based on these two techniques is proposed, combined with optimization techniques to reduce conservatism. The procedure is demonstrated on a real 1-DoF hydraulically actuated platform.
doi_str_mv 10.1007/s40430-021-03079-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2545239782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2545239782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-19aee6a36ff8c93c4d7cef566f88619807f6ab2d3e3a906347c655b43e06cd8b3</originalsourceid><addsrcrecordid>eNp9kE1KBDEQhRtRcBy9gKuA62il051OL2XwDwQ3ug6ZdKWNxGRMMovxbl7BM9nagjtXVRTvvXp8VXXK4JwBdBe5gYYDhZpR4ND1lO1VCyZBUC56tj_topO0lZ08rI5yfgHgdSvaReVXmIqzzujiYiDREu8C6kSMjxkH6mPcEBNDSdF7TJlsswsjKc9IPj_oqDfkFUtyhugw_FxHDJi0d-84kFz02nlXduRVp9GF4-rAap_x5Hcuq6frq8fVLb1_uLlbXd5TUwMUynqNKDQX1krTc9MMnUHbCmGlFKyX0Fmh1_XAkeseBG86I9p23XAEYQa55svqbM7dpPi2xVzUS9ymML1Uddu0Ne87WU-qelaZFHNOaNUmuanoTjFQ31TVTFVNVNUPVcUmE59NeRKHEdNf9D-uLxHrfMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2545239782</pqid></control><display><type>article</type><title>Certification of linear closed-loop controllers using the ν-gap metric and the generalized stability margin</title><source>Springer Online Journals Complete</source><creator>Okle, Jan ; Noppeney, Victor Tamassia ; Boaventura, Thiago</creator><creatorcontrib>Okle, Jan ; Noppeney, Victor Tamassia ; Boaventura, Thiago</creatorcontrib><description>In almost all mechatronic devices, safety is a fundamental requirement. Unpredicted system behavior resultant from control instability may potentially damage objects or even harm human users. To certify that the system will remain stable under predefined conditions is not only desirable but mandatory for systems like jet engines and wearable robots (e.g., robotic prosthesis and exoskeleton robots). The certification of control algorithms is already a standard procedure in some engineering fields, such as aviation. In robotics, however, a certification procedure is not yet traditionally incorporated in the control design. To fill this gap is an essential step towards making robots, especially those that closely interact with human beings, largely available on the market and endorsed by the public in general. This paper uses the ν -gap metric and the generalized stability margin to assess the stability of a closed-loop linear system, accounting for differences between plants. A novel iterative certification procedure based on these two techniques is proposed, combined with optimization techniques to reduce conservatism. The procedure is demonstrated on a real 1-DoF hydraulically actuated platform.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-021-03079-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Certification ; Control algorithms ; Control stability ; Engineering ; Exoskeletons ; Jet engines ; Mechanical Engineering ; Optimization ; Optimization techniques ; Prostheses ; Robot control ; Robotics ; Robots ; Stability analysis ; Technical Paper</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021-07, Vol.43 (7), Article 366</ispartof><rights>The Brazilian Society of Mechanical Sciences and Engineering 2021</rights><rights>The Brazilian Society of Mechanical Sciences and Engineering 2021.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-19aee6a36ff8c93c4d7cef566f88619807f6ab2d3e3a906347c655b43e06cd8b3</cites><orcidid>0000-0002-9008-9883 ; 0000-0002-2864-6319</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-021-03079-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-021-03079-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Okle, Jan</creatorcontrib><creatorcontrib>Noppeney, Victor Tamassia</creatorcontrib><creatorcontrib>Boaventura, Thiago</creatorcontrib><title>Certification of linear closed-loop controllers using the ν-gap metric and the generalized stability margin</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>In almost all mechatronic devices, safety is a fundamental requirement. Unpredicted system behavior resultant from control instability may potentially damage objects or even harm human users. To certify that the system will remain stable under predefined conditions is not only desirable but mandatory for systems like jet engines and wearable robots (e.g., robotic prosthesis and exoskeleton robots). The certification of control algorithms is already a standard procedure in some engineering fields, such as aviation. In robotics, however, a certification procedure is not yet traditionally incorporated in the control design. To fill this gap is an essential step towards making robots, especially those that closely interact with human beings, largely available on the market and endorsed by the public in general. This paper uses the ν -gap metric and the generalized stability margin to assess the stability of a closed-loop linear system, accounting for differences between plants. A novel iterative certification procedure based on these two techniques is proposed, combined with optimization techniques to reduce conservatism. The procedure is demonstrated on a real 1-DoF hydraulically actuated platform.</description><subject>Algorithms</subject><subject>Certification</subject><subject>Control algorithms</subject><subject>Control stability</subject><subject>Engineering</subject><subject>Exoskeletons</subject><subject>Jet engines</subject><subject>Mechanical Engineering</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Prostheses</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Stability analysis</subject><subject>Technical Paper</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KBDEQhRtRcBy9gKuA62il051OL2XwDwQ3ug6ZdKWNxGRMMovxbl7BM9nagjtXVRTvvXp8VXXK4JwBdBe5gYYDhZpR4ND1lO1VCyZBUC56tj_topO0lZ08rI5yfgHgdSvaReVXmIqzzujiYiDREu8C6kSMjxkH6mPcEBNDSdF7TJlsswsjKc9IPj_oqDfkFUtyhugw_FxHDJi0d-84kFz02nlXduRVp9GF4-rAap_x5Hcuq6frq8fVLb1_uLlbXd5TUwMUynqNKDQX1krTc9MMnUHbCmGlFKyX0Fmh1_XAkeseBG86I9p23XAEYQa55svqbM7dpPi2xVzUS9ymML1Uddu0Ne87WU-qelaZFHNOaNUmuanoTjFQ31TVTFVNVNUPVcUmE59NeRKHEdNf9D-uLxHrfMI</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Okle, Jan</creator><creator>Noppeney, Victor Tamassia</creator><creator>Boaventura, Thiago</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9008-9883</orcidid><orcidid>https://orcid.org/0000-0002-2864-6319</orcidid></search><sort><creationdate>20210701</creationdate><title>Certification of linear closed-loop controllers using the ν-gap metric and the generalized stability margin</title><author>Okle, Jan ; Noppeney, Victor Tamassia ; Boaventura, Thiago</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-19aee6a36ff8c93c4d7cef566f88619807f6ab2d3e3a906347c655b43e06cd8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Certification</topic><topic>Control algorithms</topic><topic>Control stability</topic><topic>Engineering</topic><topic>Exoskeletons</topic><topic>Jet engines</topic><topic>Mechanical Engineering</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Prostheses</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Stability analysis</topic><topic>Technical Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Okle, Jan</creatorcontrib><creatorcontrib>Noppeney, Victor Tamassia</creatorcontrib><creatorcontrib>Boaventura, Thiago</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okle, Jan</au><au>Noppeney, Victor Tamassia</au><au>Boaventura, Thiago</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Certification of linear closed-loop controllers using the ν-gap metric and the generalized stability margin</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>43</volume><issue>7</issue><artnum>366</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>In almost all mechatronic devices, safety is a fundamental requirement. Unpredicted system behavior resultant from control instability may potentially damage objects or even harm human users. To certify that the system will remain stable under predefined conditions is not only desirable but mandatory for systems like jet engines and wearable robots (e.g., robotic prosthesis and exoskeleton robots). The certification of control algorithms is already a standard procedure in some engineering fields, such as aviation. In robotics, however, a certification procedure is not yet traditionally incorporated in the control design. To fill this gap is an essential step towards making robots, especially those that closely interact with human beings, largely available on the market and endorsed by the public in general. This paper uses the ν -gap metric and the generalized stability margin to assess the stability of a closed-loop linear system, accounting for differences between plants. A novel iterative certification procedure based on these two techniques is proposed, combined with optimization techniques to reduce conservatism. The procedure is demonstrated on a real 1-DoF hydraulically actuated platform.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-021-03079-1</doi><orcidid>https://orcid.org/0000-0002-9008-9883</orcidid><orcidid>https://orcid.org/0000-0002-2864-6319</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021-07, Vol.43 (7), Article 366
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2545239782
source Springer Online Journals Complete
subjects Algorithms
Certification
Control algorithms
Control stability
Engineering
Exoskeletons
Jet engines
Mechanical Engineering
Optimization
Optimization techniques
Prostheses
Robot control
Robotics
Robots
Stability analysis
Technical Paper
title Certification of linear closed-loop controllers using the ν-gap metric and the generalized stability margin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A16%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Certification%20of%20linear%20closed-loop%20controllers%20using%20the%20%CE%BD-gap%20metric%20and%20the%20generalized%20stability%20margin&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Okle,%20Jan&rft.date=2021-07-01&rft.volume=43&rft.issue=7&rft.artnum=366&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-021-03079-1&rft_dat=%3Cproquest_cross%3E2545239782%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2545239782&rft_id=info:pmid/&rfr_iscdi=true