Hydroclimate Trend Analysis of Upper Awash Basin, Ethiopia

The Awash River basin is classified into the upper basin, middle basin, and lower basin. The upper basin is the most irrigated and socio-economically important, wherein early and modern agriculture started. This study aimed to assess the upper basin's hydroclimate variability under climate chan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-06, Vol.13 (12), p.1680, Article 1680
Hauptverfasser: Duguma, Fekadu Aduna, Feyessa, Fekadu Fufa, Demissie, Tamene Adugna, Januszkiewicz, Krystyna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Awash River basin is classified into the upper basin, middle basin, and lower basin. The upper basin is the most irrigated and socio-economically important, wherein early and modern agriculture started. This study aimed to assess the upper basin's hydroclimate variability under climate change from 1991 to 2015 following the county's land-use policy change. Distinguished topographical settings, namely, lowland, midland, and highland, are used for upper Awash basin hydroclimate trend analysis. Lowland stations revealed a nonsignificant seasonal and annual increasing trend except for the Autumn season. Midland stations showed a decreased seasonal rainfall. Except for Sendafa, the increased station, the highland area exhibited an annual decreasing trend. The Awash-Hombole and Mojo main tributaries are used for the evaluation of basin streamflow. The Awash-Hombole main tributary resulted in annually growing trends during the summer season. Mojo main tributary resulted in a significantly decreasing trend during the spring, summer, and autumn seasons with a 99% level of significance. Therefore, following the basin's topographic nature, the change of hydroclimatic elements, mainly of the rainfall and streamflow, is observed. Accordingly, its hydroclimate variated by 11 and 38% with precipitation and streamflow, respectively, from the mean value within the study time series.
ISSN:2073-4441
2073-4441
DOI:10.3390/w13121680