Backward problem for time-space fractional diffusion equations in Hilbert scales

This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2021-07, Vol.93, p.253-264
Hauptverfasser: Trong, Dang Duc, Hai, Dinh Nguyen Duy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 253
container_title Computers & mathematics with applications (1987)
container_volume 93
creator Trong, Dang Duc
Hai, Dinh Nguyen Duy
description This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instability for the problem. In order to overcome the ill-posedness of the problem, we apply a modified version of quasi-boundary value method to construct stable approximation problem. Using a Hölder-type smoothness assumption of the exact solution it is shown that estimates achieve optimal rates of convergence in Hilbert scales both for an a-priori and for an a-posteriori parameter choice strategies.
doi_str_mv 10.1016/j.camwa.2021.04.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544913639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122121001589</els_id><sourcerecordid>2544913639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e1ffa380c6d2dff0f89eb0cd27605c6c2f14b1f74a0e8a0255cefaa854a884ed3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFwscU5Y_yRxDxygAopUCQ5wtrbOWnJImtZOqXh7UsqZ065WM6uZj7FrAbkAUd42ucNuj7kEKXLQOQhzwibCVCqrytKcsgmYmcmElOKcXaTUAIBWEibs7QHd5x5jzTexX7XUcd9HPoSOsrRBR9xHdEPo19jyOni_S-POabvDwzHxsOaL0K4oDjw5bCldsjOPbaKrvzllH0-P7_NFtnx9fpnfLzOnlBgyEt6jMuDKWtbegzczWoGrZVVC4UonvdAr4SuNQAZBFoUjj2gKjcZoqtWU3Rz_jrm3O0qDbfpdHGMmKwutZ0KVajaq1FHlYp9SJG83MXQYv60Ae0BnG_uLzh7QWdB2RDe67o4uGgt8BYo2uUBrR3WI5AZb9-Ff_w967nmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544913639</pqid></control><display><type>article</type><title>Backward problem for time-space fractional diffusion equations in Hilbert scales</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Trong, Dang Duc ; Hai, Dinh Nguyen Duy</creator><creatorcontrib>Trong, Dang Duc ; Hai, Dinh Nguyen Duy</creatorcontrib><description>This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instability for the problem. In order to overcome the ill-posedness of the problem, we apply a modified version of quasi-boundary value method to construct stable approximation problem. Using a Hölder-type smoothness assumption of the exact solution it is shown that estimates achieve optimal rates of convergence in Hilbert scales both for an a-priori and for an a-posteriori parameter choice strategies.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2021.04.018</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A-posteriori parameter choice ; A-priori parameter choice ; Approximation ; Exact solutions ; Ill-posedness ; Mathematical analysis ; Optimal convergence estimates ; Regularization ; Smoothness ; Time-space fractional backward diffusion problem</subject><ispartof>Computers &amp; mathematics with applications (1987), 2021-07, Vol.93, p.253-264</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e1ffa380c6d2dff0f89eb0cd27605c6c2f14b1f74a0e8a0255cefaa854a884ed3</citedby><cites>FETCH-LOGICAL-c331t-e1ffa380c6d2dff0f89eb0cd27605c6c2f14b1f74a0e8a0255cefaa854a884ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122121001589$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Trong, Dang Duc</creatorcontrib><creatorcontrib>Hai, Dinh Nguyen Duy</creatorcontrib><title>Backward problem for time-space fractional diffusion equations in Hilbert scales</title><title>Computers &amp; mathematics with applications (1987)</title><description>This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instability for the problem. In order to overcome the ill-posedness of the problem, we apply a modified version of quasi-boundary value method to construct stable approximation problem. Using a Hölder-type smoothness assumption of the exact solution it is shown that estimates achieve optimal rates of convergence in Hilbert scales both for an a-priori and for an a-posteriori parameter choice strategies.</description><subject>A-posteriori parameter choice</subject><subject>A-priori parameter choice</subject><subject>Approximation</subject><subject>Exact solutions</subject><subject>Ill-posedness</subject><subject>Mathematical analysis</subject><subject>Optimal convergence estimates</subject><subject>Regularization</subject><subject>Smoothness</subject><subject>Time-space fractional backward diffusion problem</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFwscU5Y_yRxDxygAopUCQ5wtrbOWnJImtZOqXh7UsqZ065WM6uZj7FrAbkAUd42ucNuj7kEKXLQOQhzwibCVCqrytKcsgmYmcmElOKcXaTUAIBWEibs7QHd5x5jzTexX7XUcd9HPoSOsrRBR9xHdEPo19jyOni_S-POabvDwzHxsOaL0K4oDjw5bCldsjOPbaKrvzllH0-P7_NFtnx9fpnfLzOnlBgyEt6jMuDKWtbegzczWoGrZVVC4UonvdAr4SuNQAZBFoUjj2gKjcZoqtWU3Rz_jrm3O0qDbfpdHGMmKwutZ0KVajaq1FHlYp9SJG83MXQYv60Ae0BnG_uLzh7QWdB2RDe67o4uGgt8BYo2uUBrR3WI5AZb9-Ff_w967nmY</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Trong, Dang Duc</creator><creator>Hai, Dinh Nguyen Duy</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210701</creationdate><title>Backward problem for time-space fractional diffusion equations in Hilbert scales</title><author>Trong, Dang Duc ; Hai, Dinh Nguyen Duy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e1ffa380c6d2dff0f89eb0cd27605c6c2f14b1f74a0e8a0255cefaa854a884ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A-posteriori parameter choice</topic><topic>A-priori parameter choice</topic><topic>Approximation</topic><topic>Exact solutions</topic><topic>Ill-posedness</topic><topic>Mathematical analysis</topic><topic>Optimal convergence estimates</topic><topic>Regularization</topic><topic>Smoothness</topic><topic>Time-space fractional backward diffusion problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trong, Dang Duc</creatorcontrib><creatorcontrib>Hai, Dinh Nguyen Duy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trong, Dang Duc</au><au>Hai, Dinh Nguyen Duy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backward problem for time-space fractional diffusion equations in Hilbert scales</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>93</volume><spage>253</spage><epage>264</epage><pages>253-264</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instability for the problem. In order to overcome the ill-posedness of the problem, we apply a modified version of quasi-boundary value method to construct stable approximation problem. Using a Hölder-type smoothness assumption of the exact solution it is shown that estimates achieve optimal rates of convergence in Hilbert scales both for an a-priori and for an a-posteriori parameter choice strategies.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2021.04.018</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2021-07, Vol.93, p.253-264
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2544913639
source Elsevier ScienceDirect Journals Complete
subjects A-posteriori parameter choice
A-priori parameter choice
Approximation
Exact solutions
Ill-posedness
Mathematical analysis
Optimal convergence estimates
Regularization
Smoothness
Time-space fractional backward diffusion problem
title Backward problem for time-space fractional diffusion equations in Hilbert scales
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backward%20problem%20for%20time-space%20fractional%20diffusion%20equations%20in%20Hilbert%20scales&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Trong,%20Dang%20Duc&rft.date=2021-07-01&rft.volume=93&rft.spage=253&rft.epage=264&rft.pages=253-264&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2021.04.018&rft_dat=%3Cproquest_cross%3E2544913639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544913639&rft_id=info:pmid/&rft_els_id=S0898122121001589&rfr_iscdi=true