Backward problem for time-space fractional diffusion equations in Hilbert scales
This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instabili...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2021-07, Vol.93, p.253-264 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | |
container_start_page | 253 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 93 |
creator | Trong, Dang Duc Hai, Dinh Nguyen Duy |
description | This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instability for the problem. In order to overcome the ill-posedness of the problem, we apply a modified version of quasi-boundary value method to construct stable approximation problem. Using a Hölder-type smoothness assumption of the exact solution it is shown that estimates achieve optimal rates of convergence in Hilbert scales both for an a-priori and for an a-posteriori parameter choice strategies. |
doi_str_mv | 10.1016/j.camwa.2021.04.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544913639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122121001589</els_id><sourcerecordid>2544913639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-e1ffa380c6d2dff0f89eb0cd27605c6c2f14b1f74a0e8a0255cefaa854a884ed3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFwscU5Y_yRxDxygAopUCQ5wtrbOWnJImtZOqXh7UsqZ065WM6uZj7FrAbkAUd42ucNuj7kEKXLQOQhzwibCVCqrytKcsgmYmcmElOKcXaTUAIBWEibs7QHd5x5jzTexX7XUcd9HPoSOsrRBR9xHdEPo19jyOni_S-POabvDwzHxsOaL0K4oDjw5bCldsjOPbaKrvzllH0-P7_NFtnx9fpnfLzOnlBgyEt6jMuDKWtbegzczWoGrZVVC4UonvdAr4SuNQAZBFoUjj2gKjcZoqtWU3Rz_jrm3O0qDbfpdHGMmKwutZ0KVajaq1FHlYp9SJG83MXQYv60Ae0BnG_uLzh7QWdB2RDe67o4uGgt8BYo2uUBrR3WI5AZb9-Ff_w967nmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544913639</pqid></control><display><type>article</type><title>Backward problem for time-space fractional diffusion equations in Hilbert scales</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Trong, Dang Duc ; Hai, Dinh Nguyen Duy</creator><creatorcontrib>Trong, Dang Duc ; Hai, Dinh Nguyen Duy</creatorcontrib><description>This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instability for the problem. In order to overcome the ill-posedness of the problem, we apply a modified version of quasi-boundary value method to construct stable approximation problem. Using a Hölder-type smoothness assumption of the exact solution it is shown that estimates achieve optimal rates of convergence in Hilbert scales both for an a-priori and for an a-posteriori parameter choice strategies.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2021.04.018</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>A-posteriori parameter choice ; A-priori parameter choice ; Approximation ; Exact solutions ; Ill-posedness ; Mathematical analysis ; Optimal convergence estimates ; Regularization ; Smoothness ; Time-space fractional backward diffusion problem</subject><ispartof>Computers & mathematics with applications (1987), 2021-07, Vol.93, p.253-264</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-e1ffa380c6d2dff0f89eb0cd27605c6c2f14b1f74a0e8a0255cefaa854a884ed3</citedby><cites>FETCH-LOGICAL-c331t-e1ffa380c6d2dff0f89eb0cd27605c6c2f14b1f74a0e8a0255cefaa854a884ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122121001589$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Trong, Dang Duc</creatorcontrib><creatorcontrib>Hai, Dinh Nguyen Duy</creatorcontrib><title>Backward problem for time-space fractional diffusion equations in Hilbert scales</title><title>Computers & mathematics with applications (1987)</title><description>This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instability for the problem. In order to overcome the ill-posedness of the problem, we apply a modified version of quasi-boundary value method to construct stable approximation problem. Using a Hölder-type smoothness assumption of the exact solution it is shown that estimates achieve optimal rates of convergence in Hilbert scales both for an a-priori and for an a-posteriori parameter choice strategies.</description><subject>A-posteriori parameter choice</subject><subject>A-priori parameter choice</subject><subject>Approximation</subject><subject>Exact solutions</subject><subject>Ill-posedness</subject><subject>Mathematical analysis</subject><subject>Optimal convergence estimates</subject><subject>Regularization</subject><subject>Smoothness</subject><subject>Time-space fractional backward diffusion problem</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFwscU5Y_yRxDxygAopUCQ5wtrbOWnJImtZOqXh7UsqZ065WM6uZj7FrAbkAUd42ucNuj7kEKXLQOQhzwibCVCqrytKcsgmYmcmElOKcXaTUAIBWEibs7QHd5x5jzTexX7XUcd9HPoSOsrRBR9xHdEPo19jyOni_S-POabvDwzHxsOaL0K4oDjw5bCldsjOPbaKrvzllH0-P7_NFtnx9fpnfLzOnlBgyEt6jMuDKWtbegzczWoGrZVVC4UonvdAr4SuNQAZBFoUjj2gKjcZoqtWU3Rz_jrm3O0qDbfpdHGMmKwutZ0KVajaq1FHlYp9SJG83MXQYv60Ae0BnG_uLzh7QWdB2RDe67o4uGgt8BYo2uUBrR3WI5AZb9-Ff_w967nmY</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Trong, Dang Duc</creator><creator>Hai, Dinh Nguyen Duy</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210701</creationdate><title>Backward problem for time-space fractional diffusion equations in Hilbert scales</title><author>Trong, Dang Duc ; Hai, Dinh Nguyen Duy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-e1ffa380c6d2dff0f89eb0cd27605c6c2f14b1f74a0e8a0255cefaa854a884ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>A-posteriori parameter choice</topic><topic>A-priori parameter choice</topic><topic>Approximation</topic><topic>Exact solutions</topic><topic>Ill-posedness</topic><topic>Mathematical analysis</topic><topic>Optimal convergence estimates</topic><topic>Regularization</topic><topic>Smoothness</topic><topic>Time-space fractional backward diffusion problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trong, Dang Duc</creatorcontrib><creatorcontrib>Hai, Dinh Nguyen Duy</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trong, Dang Duc</au><au>Hai, Dinh Nguyen Duy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backward problem for time-space fractional diffusion equations in Hilbert scales</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>93</volume><spage>253</spage><epage>264</epage><pages>253-264</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This work is concerned with a mathematical study of backward problem for time-space fractional diffusion equations associated with the observed data measured in Hilbert scales. Transforming the original problem into an operator equation, we investigate the existence, the uniqueness and the instability for the problem. In order to overcome the ill-posedness of the problem, we apply a modified version of quasi-boundary value method to construct stable approximation problem. Using a Hölder-type smoothness assumption of the exact solution it is shown that estimates achieve optimal rates of convergence in Hilbert scales both for an a-priori and for an a-posteriori parameter choice strategies.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2021.04.018</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2021-07, Vol.93, p.253-264 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2544913639 |
source | Elsevier ScienceDirect Journals Complete |
subjects | A-posteriori parameter choice A-priori parameter choice Approximation Exact solutions Ill-posedness Mathematical analysis Optimal convergence estimates Regularization Smoothness Time-space fractional backward diffusion problem |
title | Backward problem for time-space fractional diffusion equations in Hilbert scales |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backward%20problem%20for%20time-space%20fractional%20diffusion%20equations%20in%20Hilbert%20scales&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Trong,%20Dang%20Duc&rft.date=2021-07-01&rft.volume=93&rft.spage=253&rft.epage=264&rft.pages=253-264&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2021.04.018&rft_dat=%3Cproquest_cross%3E2544913639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544913639&rft_id=info:pmid/&rft_els_id=S0898122121001589&rfr_iscdi=true |