Two-step MPS-MFS ghost point method for solving partial differential equations

The fictitious boundary surrounding the domain is required in the implementation of the method of fundamental solutions (MFS). A similar approach of taking a portion of the centres of radial basis functions (RBFs) outside the domain in the context of the method of particular solutions (MPS) is propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2021-07, Vol.94, p.38-46
Hauptverfasser: Young, D.L., Lin, Shin-Ruei, Chen, Chuin-Shan, Chen, C.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue
container_start_page 38
container_title Computers & mathematics with applications (1987)
container_volume 94
creator Young, D.L.
Lin, Shin-Ruei
Chen, Chuin-Shan
Chen, C.S.
description The fictitious boundary surrounding the domain is required in the implementation of the method of fundamental solutions (MFS). A similar approach of taking a portion of the centres of radial basis functions (RBFs) outside the domain in the context of the method of particular solutions (MPS) is proposed to further improve the performance of a two-step MPS-MFS method. Since the shape parameter of RBFs is problem dependent, several known procedures on how to determine a good shape parameter are introduced for solving various types of problems. The proposed method is not only highly accurate but also fairly stable due to the use of the particular solutions and fundamental solutions. To demonstrate the effectiveness of the proposed method, five numerical examples in highly complicate and irregular domains, which include second and fourth order elliptic partial differential equations in 2D and 3D, are presented.
doi_str_mv 10.1016/j.camwa.2021.04.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544912962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122121001279</els_id><sourcerecordid>2544912962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-4248b6b5f32852b938c1467af4f776ccb90965217ce4f8d71df71abddf748bb03</originalsourceid><addsrcrecordid>eNp9kM1OAjEURhujiYg-gZsmrmfs30w7CxeGiJqAmoDrptNpoQSmQ1sgvr0DuHb15SbfuTf3AHCPUY4RLh9XuVabg8oJIjhHLEcIX4ABFpxmvCzFJRggUYkME4KvwU2MK4QQowQNwMf84LOYTAenX7NsOp7BxdLHBDvv2gQ3Ji19A60PMPr13rUL2KmQnFrDxllrgmlPg9nuVHK-jbfgyqp1NHd_OQTf45f56C2bfL6-j54nmaYUp4wRJuqyLiwloiB1RYXGrOTKMst5qXVdoaosCObaMCsajhvLsaqbPnqwRnQIHs57u-C3OxOTXPldaPuTkhSMVZhUJelb9NzSwccYjJVdcBsVfiRG8ihOruRJnDyKk4jJXlxPPZ0p0z-wdybIqJ1ptWlcMDrJxrt_-V_QCXdN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544912962</pqid></control><display><type>article</type><title>Two-step MPS-MFS ghost point method for solving partial differential equations</title><source>Elsevier ScienceDirect Journals</source><creator>Young, D.L. ; Lin, Shin-Ruei ; Chen, Chuin-Shan ; Chen, C.S.</creator><creatorcontrib>Young, D.L. ; Lin, Shin-Ruei ; Chen, Chuin-Shan ; Chen, C.S.</creatorcontrib><description>The fictitious boundary surrounding the domain is required in the implementation of the method of fundamental solutions (MFS). A similar approach of taking a portion of the centres of radial basis functions (RBFs) outside the domain in the context of the method of particular solutions (MPS) is proposed to further improve the performance of a two-step MPS-MFS method. Since the shape parameter of RBFs is problem dependent, several known procedures on how to determine a good shape parameter are introduced for solving various types of problems. The proposed method is not only highly accurate but also fairly stable due to the use of the particular solutions and fundamental solutions. To demonstrate the effectiveness of the proposed method, five numerical examples in highly complicate and irregular domains, which include second and fourth order elliptic partial differential equations in 2D and 3D, are presented.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2021.04.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Domains ; Elliptic functions ; Fictitious points method ; Method of fundamental solutions ; Method of particular solutions ; Multiquadrics ; Parameters ; Partial differential equations ; Radial basis function ; Radial basis functions ; Shape parameter</subject><ispartof>Computers &amp; mathematics with applications (1987), 2021-07, Vol.94, p.38-46</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Jul 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-4248b6b5f32852b938c1467af4f776ccb90965217ce4f8d71df71abddf748bb03</citedby><cites>FETCH-LOGICAL-c331t-4248b6b5f32852b938c1467af4f776ccb90965217ce4f8d71df71abddf748bb03</cites><orcidid>0000-0002-3611-2982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122121001279$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Young, D.L.</creatorcontrib><creatorcontrib>Lin, Shin-Ruei</creatorcontrib><creatorcontrib>Chen, Chuin-Shan</creatorcontrib><creatorcontrib>Chen, C.S.</creatorcontrib><title>Two-step MPS-MFS ghost point method for solving partial differential equations</title><title>Computers &amp; mathematics with applications (1987)</title><description>The fictitious boundary surrounding the domain is required in the implementation of the method of fundamental solutions (MFS). A similar approach of taking a portion of the centres of radial basis functions (RBFs) outside the domain in the context of the method of particular solutions (MPS) is proposed to further improve the performance of a two-step MPS-MFS method. Since the shape parameter of RBFs is problem dependent, several known procedures on how to determine a good shape parameter are introduced for solving various types of problems. The proposed method is not only highly accurate but also fairly stable due to the use of the particular solutions and fundamental solutions. To demonstrate the effectiveness of the proposed method, five numerical examples in highly complicate and irregular domains, which include second and fourth order elliptic partial differential equations in 2D and 3D, are presented.</description><subject>Domains</subject><subject>Elliptic functions</subject><subject>Fictitious points method</subject><subject>Method of fundamental solutions</subject><subject>Method of particular solutions</subject><subject>Multiquadrics</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Radial basis function</subject><subject>Radial basis functions</subject><subject>Shape parameter</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAjEURhujiYg-gZsmrmfs30w7CxeGiJqAmoDrptNpoQSmQ1sgvr0DuHb15SbfuTf3AHCPUY4RLh9XuVabg8oJIjhHLEcIX4ABFpxmvCzFJRggUYkME4KvwU2MK4QQowQNwMf84LOYTAenX7NsOp7BxdLHBDvv2gQ3Ji19A60PMPr13rUL2KmQnFrDxllrgmlPg9nuVHK-jbfgyqp1NHd_OQTf45f56C2bfL6-j54nmaYUp4wRJuqyLiwloiB1RYXGrOTKMst5qXVdoaosCObaMCsajhvLsaqbPnqwRnQIHs57u-C3OxOTXPldaPuTkhSMVZhUJelb9NzSwccYjJVdcBsVfiRG8ihOruRJnDyKk4jJXlxPPZ0p0z-wdybIqJ1ptWlcMDrJxrt_-V_QCXdN</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Young, D.L.</creator><creator>Lin, Shin-Ruei</creator><creator>Chen, Chuin-Shan</creator><creator>Chen, C.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3611-2982</orcidid></search><sort><creationdate>20210715</creationdate><title>Two-step MPS-MFS ghost point method for solving partial differential equations</title><author>Young, D.L. ; Lin, Shin-Ruei ; Chen, Chuin-Shan ; Chen, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-4248b6b5f32852b938c1467af4f776ccb90965217ce4f8d71df71abddf748bb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Domains</topic><topic>Elliptic functions</topic><topic>Fictitious points method</topic><topic>Method of fundamental solutions</topic><topic>Method of particular solutions</topic><topic>Multiquadrics</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Radial basis function</topic><topic>Radial basis functions</topic><topic>Shape parameter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, D.L.</creatorcontrib><creatorcontrib>Lin, Shin-Ruei</creatorcontrib><creatorcontrib>Chen, Chuin-Shan</creatorcontrib><creatorcontrib>Chen, C.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, D.L.</au><au>Lin, Shin-Ruei</au><au>Chen, Chuin-Shan</au><au>Chen, C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-step MPS-MFS ghost point method for solving partial differential equations</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>94</volume><spage>38</spage><epage>46</epage><pages>38-46</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>The fictitious boundary surrounding the domain is required in the implementation of the method of fundamental solutions (MFS). A similar approach of taking a portion of the centres of radial basis functions (RBFs) outside the domain in the context of the method of particular solutions (MPS) is proposed to further improve the performance of a two-step MPS-MFS method. Since the shape parameter of RBFs is problem dependent, several known procedures on how to determine a good shape parameter are introduced for solving various types of problems. The proposed method is not only highly accurate but also fairly stable due to the use of the particular solutions and fundamental solutions. To demonstrate the effectiveness of the proposed method, five numerical examples in highly complicate and irregular domains, which include second and fourth order elliptic partial differential equations in 2D and 3D, are presented.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2021.04.001</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3611-2982</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2021-07, Vol.94, p.38-46
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2544912962
source Elsevier ScienceDirect Journals
subjects Domains
Elliptic functions
Fictitious points method
Method of fundamental solutions
Method of particular solutions
Multiquadrics
Parameters
Partial differential equations
Radial basis function
Radial basis functions
Shape parameter
title Two-step MPS-MFS ghost point method for solving partial differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-step%20MPS-MFS%20ghost%20point%20method%20for%20solving%20partial%20differential%20equations&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Young,%20D.L.&rft.date=2021-07-15&rft.volume=94&rft.spage=38&rft.epage=46&rft.pages=38-46&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2021.04.001&rft_dat=%3Cproquest_cross%3E2544912962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544912962&rft_id=info:pmid/&rft_els_id=S0898122121001279&rfr_iscdi=true