Particle‐in‐cell simulation for breakdown phenomena in vacuum
The initiating process of vacuum breakdown is still unknown despite the efforts of many researchers in the long history of vacuum insulation. This paper reports the results of Particle‐In‐Cell Monte Carlo Collision simulation of the electrons, positive ions, and neutrals in the vicinity of an emitte...
Gespeichert in:
Veröffentlicht in: | Electrical engineering in Japan 2021-06, Vol.214 (2), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Electrical engineering in Japan |
container_volume | 214 |
creator | Ejiri, Haruki Fujii, Takashi Kumada, Akiko Hidaka, Kunihiko |
description | The initiating process of vacuum breakdown is still unknown despite the efforts of many researchers in the long history of vacuum insulation. This paper reports the results of Particle‐In‐Cell Monte Carlo Collision simulation of the electrons, positive ions, and neutrals in the vicinity of an emitter on the cathode. The radius of the emitter re, the temperature of the emitter T, product of macroscopic electric field and electric field enhancement factor β ⋅Emac, and the electric field enhancement factor β itself are used as the parameters. In some combinations of the parameter values, the distort of electric field and the increase in current are observed as the result of the following positive feedback: field emission, positive ion generation, electric field enhancement by approach of positive ions, and increase in field emission electrons. All parameters affect whether the current increase or not. The radius of the emitter re is a key parameter that determines the occurrence of the current increase. This is because the density of the neutrals in the region where ionization occurs becomes larger with re. Necessary conditions to occur the current increase are the field emission current in the order of 0.1 μA or more and the line integral neutral density along z‐direction at the center of the emitter in the order of 1017/m2 or more. |
doi_str_mv | 10.1002/eej.23300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544838533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544838533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3630-a469f471190de9a273a24cba45ed5428617dbea6fcd9d9bd5f17db8ea3baa3353</originalsourceid><addsrcrecordid>eNp1kLtOw0AQRVcIJEKg4A8sUVE42ffaZRSFlyJBAfVq7B2LDX6xjonS8Ql8I1-Cg2lpZqTRmXulQ8glozNGKZ8jbmZcCEqPyIQpTmMtmT4mEyq5jI3R9JScdd2GUmqYSSZk8QRh6_MSvz-_fD2MHMsy6nzVl7D1TR0VTYiygPDmml0dta9YNxXWEPk6-oC876tzclJA2eHF356Sl5vV8_IuXj_e3i8X6zgXWtAYpE4LaRhLqcMUuBHAZZ6BVOiU5IlmxmUIushd6tLMqeJwSBBEBiCEElNyNea2oXnvsdvaTdOHeqi0XEmZiEQJMVDXI5WHpusCFrYNvoKwt4zagyE7GLK_hgZ2PrI7X-L-f9CuVg_jxw_BSGmO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544838533</pqid></control><display><type>article</type><title>Particle‐in‐cell simulation for breakdown phenomena in vacuum</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ejiri, Haruki ; Fujii, Takashi ; Kumada, Akiko ; Hidaka, Kunihiko</creator><creatorcontrib>Ejiri, Haruki ; Fujii, Takashi ; Kumada, Akiko ; Hidaka, Kunihiko</creatorcontrib><description>The initiating process of vacuum breakdown is still unknown despite the efforts of many researchers in the long history of vacuum insulation. This paper reports the results of Particle‐In‐Cell Monte Carlo Collision simulation of the electrons, positive ions, and neutrals in the vicinity of an emitter on the cathode. The radius of the emitter re, the temperature of the emitter T, product of macroscopic electric field and electric field enhancement factor β ⋅Emac, and the electric field enhancement factor β itself are used as the parameters. In some combinations of the parameter values, the distort of electric field and the increase in current are observed as the result of the following positive feedback: field emission, positive ion generation, electric field enhancement by approach of positive ions, and increase in field emission electrons. All parameters affect whether the current increase or not. The radius of the emitter re is a key parameter that determines the occurrence of the current increase. This is because the density of the neutrals in the region where ionization occurs becomes larger with re. Necessary conditions to occur the current increase are the field emission current in the order of 0.1 μA or more and the line integral neutral density along z‐direction at the center of the emitter in the order of 1017/m2 or more.</description><identifier>ISSN: 0424-7760</identifier><identifier>EISSN: 1520-6416</identifier><identifier>DOI: 10.1002/eej.23300</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Breakdown ; Density ; Electric fields ; Electrons ; Emitters ; Field emission ; Insulation ; Ions ; Parameters ; particle‐in‐cell method ; Positive feedback ; Positive ions ; vacuum</subject><ispartof>Electrical engineering in Japan, 2021-06, Vol.214 (2), p.n/a</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2021 by Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3630-a469f471190de9a273a24cba45ed5428617dbea6fcd9d9bd5f17db8ea3baa3353</citedby><cites>FETCH-LOGICAL-c3630-a469f471190de9a273a24cba45ed5428617dbea6fcd9d9bd5f17db8ea3baa3353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feej.23300$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feej.23300$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ejiri, Haruki</creatorcontrib><creatorcontrib>Fujii, Takashi</creatorcontrib><creatorcontrib>Kumada, Akiko</creatorcontrib><creatorcontrib>Hidaka, Kunihiko</creatorcontrib><title>Particle‐in‐cell simulation for breakdown phenomena in vacuum</title><title>Electrical engineering in Japan</title><description>The initiating process of vacuum breakdown is still unknown despite the efforts of many researchers in the long history of vacuum insulation. This paper reports the results of Particle‐In‐Cell Monte Carlo Collision simulation of the electrons, positive ions, and neutrals in the vicinity of an emitter on the cathode. The radius of the emitter re, the temperature of the emitter T, product of macroscopic electric field and electric field enhancement factor β ⋅Emac, and the electric field enhancement factor β itself are used as the parameters. In some combinations of the parameter values, the distort of electric field and the increase in current are observed as the result of the following positive feedback: field emission, positive ion generation, electric field enhancement by approach of positive ions, and increase in field emission electrons. All parameters affect whether the current increase or not. The radius of the emitter re is a key parameter that determines the occurrence of the current increase. This is because the density of the neutrals in the region where ionization occurs becomes larger with re. Necessary conditions to occur the current increase are the field emission current in the order of 0.1 μA or more and the line integral neutral density along z‐direction at the center of the emitter in the order of 1017/m2 or more.</description><subject>Breakdown</subject><subject>Density</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Emitters</subject><subject>Field emission</subject><subject>Insulation</subject><subject>Ions</subject><subject>Parameters</subject><subject>particle‐in‐cell method</subject><subject>Positive feedback</subject><subject>Positive ions</subject><subject>vacuum</subject><issn>0424-7760</issn><issn>1520-6416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOw0AQRVcIJEKg4A8sUVE42ffaZRSFlyJBAfVq7B2LDX6xjonS8Ql8I1-Cg2lpZqTRmXulQ8glozNGKZ8jbmZcCEqPyIQpTmMtmT4mEyq5jI3R9JScdd2GUmqYSSZk8QRh6_MSvz-_fD2MHMsy6nzVl7D1TR0VTYiygPDmml0dta9YNxXWEPk6-oC876tzclJA2eHF356Sl5vV8_IuXj_e3i8X6zgXWtAYpE4LaRhLqcMUuBHAZZ6BVOiU5IlmxmUIushd6tLMqeJwSBBEBiCEElNyNea2oXnvsdvaTdOHeqi0XEmZiEQJMVDXI5WHpusCFrYNvoKwt4zagyE7GLK_hgZ2PrI7X-L-f9CuVg_jxw_BSGmO</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Ejiri, Haruki</creator><creator>Fujii, Takashi</creator><creator>Kumada, Akiko</creator><creator>Hidaka, Kunihiko</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>202106</creationdate><title>Particle‐in‐cell simulation for breakdown phenomena in vacuum</title><author>Ejiri, Haruki ; Fujii, Takashi ; Kumada, Akiko ; Hidaka, Kunihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3630-a469f471190de9a273a24cba45ed5428617dbea6fcd9d9bd5f17db8ea3baa3353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Breakdown</topic><topic>Density</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Emitters</topic><topic>Field emission</topic><topic>Insulation</topic><topic>Ions</topic><topic>Parameters</topic><topic>particle‐in‐cell method</topic><topic>Positive feedback</topic><topic>Positive ions</topic><topic>vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ejiri, Haruki</creatorcontrib><creatorcontrib>Fujii, Takashi</creatorcontrib><creatorcontrib>Kumada, Akiko</creatorcontrib><creatorcontrib>Hidaka, Kunihiko</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrical engineering in Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ejiri, Haruki</au><au>Fujii, Takashi</au><au>Kumada, Akiko</au><au>Hidaka, Kunihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle‐in‐cell simulation for breakdown phenomena in vacuum</atitle><jtitle>Electrical engineering in Japan</jtitle><date>2021-06</date><risdate>2021</risdate><volume>214</volume><issue>2</issue><epage>n/a</epage><issn>0424-7760</issn><eissn>1520-6416</eissn><abstract>The initiating process of vacuum breakdown is still unknown despite the efforts of many researchers in the long history of vacuum insulation. This paper reports the results of Particle‐In‐Cell Monte Carlo Collision simulation of the electrons, positive ions, and neutrals in the vicinity of an emitter on the cathode. The radius of the emitter re, the temperature of the emitter T, product of macroscopic electric field and electric field enhancement factor β ⋅Emac, and the electric field enhancement factor β itself are used as the parameters. In some combinations of the parameter values, the distort of electric field and the increase in current are observed as the result of the following positive feedback: field emission, positive ion generation, electric field enhancement by approach of positive ions, and increase in field emission electrons. All parameters affect whether the current increase or not. The radius of the emitter re is a key parameter that determines the occurrence of the current increase. This is because the density of the neutrals in the region where ionization occurs becomes larger with re. Necessary conditions to occur the current increase are the field emission current in the order of 0.1 μA or more and the line integral neutral density along z‐direction at the center of the emitter in the order of 1017/m2 or more.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eej.23300</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0424-7760 |
ispartof | Electrical engineering in Japan, 2021-06, Vol.214 (2), p.n/a |
issn | 0424-7760 1520-6416 |
language | eng |
recordid | cdi_proquest_journals_2544838533 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Breakdown Density Electric fields Electrons Emitters Field emission Insulation Ions Parameters particle‐in‐cell method Positive feedback Positive ions vacuum |
title | Particle‐in‐cell simulation for breakdown phenomena in vacuum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%E2%80%90in%E2%80%90cell%20simulation%20for%20breakdown%20phenomena%20in%20vacuum&rft.jtitle=Electrical%20engineering%20in%20Japan&rft.au=Ejiri,%20Haruki&rft.date=2021-06&rft.volume=214&rft.issue=2&rft.epage=n/a&rft.issn=0424-7760&rft.eissn=1520-6416&rft_id=info:doi/10.1002/eej.23300&rft_dat=%3Cproquest_cross%3E2544838533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544838533&rft_id=info:pmid/&rfr_iscdi=true |