Particle‐in‐cell simulation for breakdown phenomena in vacuum

The initiating process of vacuum breakdown is still unknown despite the efforts of many researchers in the long history of vacuum insulation. This paper reports the results of Particle‐In‐Cell Monte Carlo Collision simulation of the electrons, positive ions, and neutrals in the vicinity of an emitte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering in Japan 2021-06, Vol.214 (2), p.n/a
Hauptverfasser: Ejiri, Haruki, Fujii, Takashi, Kumada, Akiko, Hidaka, Kunihiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Electrical engineering in Japan
container_volume 214
creator Ejiri, Haruki
Fujii, Takashi
Kumada, Akiko
Hidaka, Kunihiko
description The initiating process of vacuum breakdown is still unknown despite the efforts of many researchers in the long history of vacuum insulation. This paper reports the results of Particle‐In‐Cell Monte Carlo Collision simulation of the electrons, positive ions, and neutrals in the vicinity of an emitter on the cathode. The radius of the emitter re, the temperature of the emitter T, product of macroscopic electric field and electric field enhancement factor β ⋅Emac, and the electric field enhancement factor β itself are used as the parameters. In some combinations of the parameter values, the distort of electric field and the increase in current are observed as the result of the following positive feedback: field emission, positive ion generation, electric field enhancement by approach of positive ions, and increase in field emission electrons. All parameters affect whether the current increase or not. The radius of the emitter re is a key parameter that determines the occurrence of the current increase. This is because the density of the neutrals in the region where ionization occurs becomes larger with re. Necessary conditions to occur the current increase are the field emission current in the order of 0.1 μA or more and the line integral neutral density along z‐direction at the center of the emitter in the order of 1017/m2 or more.
doi_str_mv 10.1002/eej.23300
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544838533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544838533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3630-a469f471190de9a273a24cba45ed5428617dbea6fcd9d9bd5f17db8ea3baa3353</originalsourceid><addsrcrecordid>eNp1kLtOw0AQRVcIJEKg4A8sUVE42ffaZRSFlyJBAfVq7B2LDX6xjonS8Ql8I1-Cg2lpZqTRmXulQ8glozNGKZ8jbmZcCEqPyIQpTmMtmT4mEyq5jI3R9JScdd2GUmqYSSZk8QRh6_MSvz-_fD2MHMsy6nzVl7D1TR0VTYiygPDmml0dta9YNxXWEPk6-oC876tzclJA2eHF356Sl5vV8_IuXj_e3i8X6zgXWtAYpE4LaRhLqcMUuBHAZZ6BVOiU5IlmxmUIushd6tLMqeJwSBBEBiCEElNyNea2oXnvsdvaTdOHeqi0XEmZiEQJMVDXI5WHpusCFrYNvoKwt4zagyE7GLK_hgZ2PrI7X-L-f9CuVg_jxw_BSGmO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544838533</pqid></control><display><type>article</type><title>Particle‐in‐cell simulation for breakdown phenomena in vacuum</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ejiri, Haruki ; Fujii, Takashi ; Kumada, Akiko ; Hidaka, Kunihiko</creator><creatorcontrib>Ejiri, Haruki ; Fujii, Takashi ; Kumada, Akiko ; Hidaka, Kunihiko</creatorcontrib><description>The initiating process of vacuum breakdown is still unknown despite the efforts of many researchers in the long history of vacuum insulation. This paper reports the results of Particle‐In‐Cell Monte Carlo Collision simulation of the electrons, positive ions, and neutrals in the vicinity of an emitter on the cathode. The radius of the emitter re, the temperature of the emitter T, product of macroscopic electric field and electric field enhancement factor β ⋅Emac, and the electric field enhancement factor β itself are used as the parameters. In some combinations of the parameter values, the distort of electric field and the increase in current are observed as the result of the following positive feedback: field emission, positive ion generation, electric field enhancement by approach of positive ions, and increase in field emission electrons. All parameters affect whether the current increase or not. The radius of the emitter re is a key parameter that determines the occurrence of the current increase. This is because the density of the neutrals in the region where ionization occurs becomes larger with re. Necessary conditions to occur the current increase are the field emission current in the order of 0.1 μA or more and the line integral neutral density along z‐direction at the center of the emitter in the order of 1017/m2 or more.</description><identifier>ISSN: 0424-7760</identifier><identifier>EISSN: 1520-6416</identifier><identifier>DOI: 10.1002/eej.23300</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Breakdown ; Density ; Electric fields ; Electrons ; Emitters ; Field emission ; Insulation ; Ions ; Parameters ; particle‐in‐cell method ; Positive feedback ; Positive ions ; vacuum</subject><ispartof>Electrical engineering in Japan, 2021-06, Vol.214 (2), p.n/a</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2021 by Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3630-a469f471190de9a273a24cba45ed5428617dbea6fcd9d9bd5f17db8ea3baa3353</citedby><cites>FETCH-LOGICAL-c3630-a469f471190de9a273a24cba45ed5428617dbea6fcd9d9bd5f17db8ea3baa3353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feej.23300$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feej.23300$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ejiri, Haruki</creatorcontrib><creatorcontrib>Fujii, Takashi</creatorcontrib><creatorcontrib>Kumada, Akiko</creatorcontrib><creatorcontrib>Hidaka, Kunihiko</creatorcontrib><title>Particle‐in‐cell simulation for breakdown phenomena in vacuum</title><title>Electrical engineering in Japan</title><description>The initiating process of vacuum breakdown is still unknown despite the efforts of many researchers in the long history of vacuum insulation. This paper reports the results of Particle‐In‐Cell Monte Carlo Collision simulation of the electrons, positive ions, and neutrals in the vicinity of an emitter on the cathode. The radius of the emitter re, the temperature of the emitter T, product of macroscopic electric field and electric field enhancement factor β ⋅Emac, and the electric field enhancement factor β itself are used as the parameters. In some combinations of the parameter values, the distort of electric field and the increase in current are observed as the result of the following positive feedback: field emission, positive ion generation, electric field enhancement by approach of positive ions, and increase in field emission electrons. All parameters affect whether the current increase or not. The radius of the emitter re is a key parameter that determines the occurrence of the current increase. This is because the density of the neutrals in the region where ionization occurs becomes larger with re. Necessary conditions to occur the current increase are the field emission current in the order of 0.1 μA or more and the line integral neutral density along z‐direction at the center of the emitter in the order of 1017/m2 or more.</description><subject>Breakdown</subject><subject>Density</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Emitters</subject><subject>Field emission</subject><subject>Insulation</subject><subject>Ions</subject><subject>Parameters</subject><subject>particle‐in‐cell method</subject><subject>Positive feedback</subject><subject>Positive ions</subject><subject>vacuum</subject><issn>0424-7760</issn><issn>1520-6416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOw0AQRVcIJEKg4A8sUVE42ffaZRSFlyJBAfVq7B2LDX6xjonS8Ql8I1-Cg2lpZqTRmXulQ8glozNGKZ8jbmZcCEqPyIQpTmMtmT4mEyq5jI3R9JScdd2GUmqYSSZk8QRh6_MSvz-_fD2MHMsy6nzVl7D1TR0VTYiygPDmml0dta9YNxXWEPk6-oC876tzclJA2eHF356Sl5vV8_IuXj_e3i8X6zgXWtAYpE4LaRhLqcMUuBHAZZ6BVOiU5IlmxmUIushd6tLMqeJwSBBEBiCEElNyNea2oXnvsdvaTdOHeqi0XEmZiEQJMVDXI5WHpusCFrYNvoKwt4zagyE7GLK_hgZ2PrI7X-L-f9CuVg_jxw_BSGmO</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Ejiri, Haruki</creator><creator>Fujii, Takashi</creator><creator>Kumada, Akiko</creator><creator>Hidaka, Kunihiko</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>202106</creationdate><title>Particle‐in‐cell simulation for breakdown phenomena in vacuum</title><author>Ejiri, Haruki ; Fujii, Takashi ; Kumada, Akiko ; Hidaka, Kunihiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3630-a469f471190de9a273a24cba45ed5428617dbea6fcd9d9bd5f17db8ea3baa3353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Breakdown</topic><topic>Density</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Emitters</topic><topic>Field emission</topic><topic>Insulation</topic><topic>Ions</topic><topic>Parameters</topic><topic>particle‐in‐cell method</topic><topic>Positive feedback</topic><topic>Positive ions</topic><topic>vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ejiri, Haruki</creatorcontrib><creatorcontrib>Fujii, Takashi</creatorcontrib><creatorcontrib>Kumada, Akiko</creatorcontrib><creatorcontrib>Hidaka, Kunihiko</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrical engineering in Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ejiri, Haruki</au><au>Fujii, Takashi</au><au>Kumada, Akiko</au><au>Hidaka, Kunihiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle‐in‐cell simulation for breakdown phenomena in vacuum</atitle><jtitle>Electrical engineering in Japan</jtitle><date>2021-06</date><risdate>2021</risdate><volume>214</volume><issue>2</issue><epage>n/a</epage><issn>0424-7760</issn><eissn>1520-6416</eissn><abstract>The initiating process of vacuum breakdown is still unknown despite the efforts of many researchers in the long history of vacuum insulation. This paper reports the results of Particle‐In‐Cell Monte Carlo Collision simulation of the electrons, positive ions, and neutrals in the vicinity of an emitter on the cathode. The radius of the emitter re, the temperature of the emitter T, product of macroscopic electric field and electric field enhancement factor β ⋅Emac, and the electric field enhancement factor β itself are used as the parameters. In some combinations of the parameter values, the distort of electric field and the increase in current are observed as the result of the following positive feedback: field emission, positive ion generation, electric field enhancement by approach of positive ions, and increase in field emission electrons. All parameters affect whether the current increase or not. The radius of the emitter re is a key parameter that determines the occurrence of the current increase. This is because the density of the neutrals in the region where ionization occurs becomes larger with re. Necessary conditions to occur the current increase are the field emission current in the order of 0.1 μA or more and the line integral neutral density along z‐direction at the center of the emitter in the order of 1017/m2 or more.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eej.23300</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0424-7760
ispartof Electrical engineering in Japan, 2021-06, Vol.214 (2), p.n/a
issn 0424-7760
1520-6416
language eng
recordid cdi_proquest_journals_2544838533
source Wiley Online Library Journals Frontfile Complete
subjects Breakdown
Density
Electric fields
Electrons
Emitters
Field emission
Insulation
Ions
Parameters
particle‐in‐cell method
Positive feedback
Positive ions
vacuum
title Particle‐in‐cell simulation for breakdown phenomena in vacuum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%E2%80%90in%E2%80%90cell%20simulation%20for%20breakdown%20phenomena%20in%20vacuum&rft.jtitle=Electrical%20engineering%20in%20Japan&rft.au=Ejiri,%20Haruki&rft.date=2021-06&rft.volume=214&rft.issue=2&rft.epage=n/a&rft.issn=0424-7760&rft.eissn=1520-6416&rft_id=info:doi/10.1002/eej.23300&rft_dat=%3Cproquest_cross%3E2544838533%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544838533&rft_id=info:pmid/&rfr_iscdi=true