Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells

Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2021-06, Vol.11 (6), p.627
Hauptverfasser: Thiruchelvan, Ponmudi Selvan, Lai, Chien-Chih, Tsai, Chih-Hung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 627
container_title Coatings (Basel)
container_volume 11
creator Thiruchelvan, Ponmudi Selvan
Lai, Chien-Chih
Tsai, Chih-Hung
description Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction temperature. Furthermore, the properties of the NiOx hole transport layer (HTL) in PSCs were enhanced by the incorporation of zinc (Zn) in NiOx thin films. X-ray diffraction and X-ray photoelectron spectroscopy results revealed that the formation of NiOx was achieved at lower annealing temperature, which confirms the process of the combustion reaction. The electrical conductivity was greatly improved with Zn doping into the NiOx crystal lattice. Better photoluminescence (PL) quenching, and low PL lifetime decay were responsible for better charge separation in 5% Zn doped NiOx, which results in improved device performance of PSCs. The maximum power conversion efficiency of inverted PSCs made with pristine NiOx and 5% Zn-NiOx as the HTL was 13.62% and 14.87%, respectively. Both the devices exhibited better stability than the PEDOT:PSS (control) device in an ambient condition.
doi_str_mv 10.3390/coatings11060627
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544697442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544697442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-96d78692a361a238e0fbdbd9b37bee60bfb855087fd6074bd19525f38ce94313</originalsourceid><addsrcrecordid>eNpdUE1LAzEUDKJgqb17DHhezcdudnOU1Vqh2II9eVmSzVtNu03WZCvtwf_uSj1IHwNvmDfMg0HompJbziW5q73qrXuPlBJBBMvP0IiRXCYipez8H79EkxjXZBhJeUHlCH2Xfqt3sbfe4WXwNcQIBr_YegMtXuytAaycwW_W1fjBd6e31Yd1eGrbbcRqAJ75dhCDcrHzocdzdYCAGx_wEoL_ihvbA371rQq4hLaNV-iiUW2Eyd8eo9X0cVXOkvni6bm8nyc1p7xPpDB5ISRTXFDFeAGk0UYbqXmuAQTRjS6yjBR5YwTJU22ozFjW8KIGmQ4JY3RzjO2C_9xB7Ku13wU3fKxYlqZC5mnKBhc5uurgYwzQVF2wWxUOFSXVb83Vac38B0QgckM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544697442</pqid></control><display><type>article</type><title>Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Thiruchelvan, Ponmudi Selvan ; Lai, Chien-Chih ; Tsai, Chih-Hung</creator><creatorcontrib>Thiruchelvan, Ponmudi Selvan ; Lai, Chien-Chih ; Tsai, Chih-Hung</creatorcontrib><description>Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction temperature. Furthermore, the properties of the NiOx hole transport layer (HTL) in PSCs were enhanced by the incorporation of zinc (Zn) in NiOx thin films. X-ray diffraction and X-ray photoelectron spectroscopy results revealed that the formation of NiOx was achieved at lower annealing temperature, which confirms the process of the combustion reaction. The electrical conductivity was greatly improved with Zn doping into the NiOx crystal lattice. Better photoluminescence (PL) quenching, and low PL lifetime decay were responsible for better charge separation in 5% Zn doped NiOx, which results in improved device performance of PSCs. The maximum power conversion efficiency of inverted PSCs made with pristine NiOx and 5% Zn-NiOx as the HTL was 13.62% and 14.87%, respectively. Both the devices exhibited better stability than the PEDOT:PSS (control) device in an ambient condition.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings11060627</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Annealing ; Combustion ; Control stability ; Crystal lattices ; Electrical resistivity ; Energy conversion efficiency ; Lasers ; Maximum power ; Metal oxides ; Morphology ; Nickel oxides ; Perovskites ; Photoelectrons ; Photoluminescence ; Photovoltaic cells ; Sol-gel processes ; Solar cells ; Thin films ; Topography ; Zinc</subject><ispartof>Coatings (Basel), 2021-06, Vol.11 (6), p.627</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-96d78692a361a238e0fbdbd9b37bee60bfb855087fd6074bd19525f38ce94313</citedby><cites>FETCH-LOGICAL-c313t-96d78692a361a238e0fbdbd9b37bee60bfb855087fd6074bd19525f38ce94313</cites><orcidid>0000-0002-3398-7409 ; 0000-0002-8572-116X ; 0000-0002-3374-8774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Thiruchelvan, Ponmudi Selvan</creatorcontrib><creatorcontrib>Lai, Chien-Chih</creatorcontrib><creatorcontrib>Tsai, Chih-Hung</creatorcontrib><title>Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells</title><title>Coatings (Basel)</title><description>Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction temperature. Furthermore, the properties of the NiOx hole transport layer (HTL) in PSCs were enhanced by the incorporation of zinc (Zn) in NiOx thin films. X-ray diffraction and X-ray photoelectron spectroscopy results revealed that the formation of NiOx was achieved at lower annealing temperature, which confirms the process of the combustion reaction. The electrical conductivity was greatly improved with Zn doping into the NiOx crystal lattice. Better photoluminescence (PL) quenching, and low PL lifetime decay were responsible for better charge separation in 5% Zn doped NiOx, which results in improved device performance of PSCs. The maximum power conversion efficiency of inverted PSCs made with pristine NiOx and 5% Zn-NiOx as the HTL was 13.62% and 14.87%, respectively. Both the devices exhibited better stability than the PEDOT:PSS (control) device in an ambient condition.</description><subject>Annealing</subject><subject>Combustion</subject><subject>Control stability</subject><subject>Crystal lattices</subject><subject>Electrical resistivity</subject><subject>Energy conversion efficiency</subject><subject>Lasers</subject><subject>Maximum power</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nickel oxides</subject><subject>Perovskites</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Sol-gel processes</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Topography</subject><subject>Zinc</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUE1LAzEUDKJgqb17DHhezcdudnOU1Vqh2II9eVmSzVtNu03WZCvtwf_uSj1IHwNvmDfMg0HompJbziW5q73qrXuPlBJBBMvP0IiRXCYipez8H79EkxjXZBhJeUHlCH2Xfqt3sbfe4WXwNcQIBr_YegMtXuytAaycwW_W1fjBd6e31Yd1eGrbbcRqAJ75dhCDcrHzocdzdYCAGx_wEoL_ihvbA371rQq4hLaNV-iiUW2Eyd8eo9X0cVXOkvni6bm8nyc1p7xPpDB5ISRTXFDFeAGk0UYbqXmuAQTRjS6yjBR5YwTJU22ozFjW8KIGmQ4JY3RzjO2C_9xB7Ku13wU3fKxYlqZC5mnKBhc5uurgYwzQVF2wWxUOFSXVb83Vac38B0QgckM</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Thiruchelvan, Ponmudi Selvan</creator><creator>Lai, Chien-Chih</creator><creator>Tsai, Chih-Hung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3398-7409</orcidid><orcidid>https://orcid.org/0000-0002-8572-116X</orcidid><orcidid>https://orcid.org/0000-0002-3374-8774</orcidid></search><sort><creationdate>20210601</creationdate><title>Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells</title><author>Thiruchelvan, Ponmudi Selvan ; Lai, Chien-Chih ; Tsai, Chih-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-96d78692a361a238e0fbdbd9b37bee60bfb855087fd6074bd19525f38ce94313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing</topic><topic>Combustion</topic><topic>Control stability</topic><topic>Crystal lattices</topic><topic>Electrical resistivity</topic><topic>Energy conversion efficiency</topic><topic>Lasers</topic><topic>Maximum power</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nickel oxides</topic><topic>Perovskites</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Sol-gel processes</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Topography</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiruchelvan, Ponmudi Selvan</creatorcontrib><creatorcontrib>Lai, Chien-Chih</creatorcontrib><creatorcontrib>Tsai, Chih-Hung</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiruchelvan, Ponmudi Selvan</au><au>Lai, Chien-Chih</au><au>Tsai, Chih-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells</atitle><jtitle>Coatings (Basel)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>627</spage><pages>627-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction temperature. Furthermore, the properties of the NiOx hole transport layer (HTL) in PSCs were enhanced by the incorporation of zinc (Zn) in NiOx thin films. X-ray diffraction and X-ray photoelectron spectroscopy results revealed that the formation of NiOx was achieved at lower annealing temperature, which confirms the process of the combustion reaction. The electrical conductivity was greatly improved with Zn doping into the NiOx crystal lattice. Better photoluminescence (PL) quenching, and low PL lifetime decay were responsible for better charge separation in 5% Zn doped NiOx, which results in improved device performance of PSCs. The maximum power conversion efficiency of inverted PSCs made with pristine NiOx and 5% Zn-NiOx as the HTL was 13.62% and 14.87%, respectively. Both the devices exhibited better stability than the PEDOT:PSS (control) device in an ambient condition.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings11060627</doi><orcidid>https://orcid.org/0000-0002-3398-7409</orcidid><orcidid>https://orcid.org/0000-0002-8572-116X</orcidid><orcidid>https://orcid.org/0000-0002-3374-8774</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2021-06, Vol.11 (6), p.627
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2544697442
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Annealing
Combustion
Control stability
Crystal lattices
Electrical resistivity
Energy conversion efficiency
Lasers
Maximum power
Metal oxides
Morphology
Nickel oxides
Perovskites
Photoelectrons
Photoluminescence
Photovoltaic cells
Sol-gel processes
Solar cells
Thin films
Topography
Zinc
title Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combustion%20Processed%20Nickel%20Oxide%20and%20Zinc%20Doped%20Nickel%20Oxide%20Thin%20Films%20as%20a%20Hole%20Transport%20Layer%20for%20Perovskite%20Solar%20Cells&rft.jtitle=Coatings%20(Basel)&rft.au=Thiruchelvan,%20Ponmudi%20Selvan&rft.date=2021-06-01&rft.volume=11&rft.issue=6&rft.spage=627&rft.pages=627-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings11060627&rft_dat=%3Cproquest_cross%3E2544697442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544697442&rft_id=info:pmid/&rfr_iscdi=true