Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells
Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction te...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2021-06, Vol.11 (6), p.627 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 627 |
container_title | Coatings (Basel) |
container_volume | 11 |
creator | Thiruchelvan, Ponmudi Selvan Lai, Chien-Chih Tsai, Chih-Hung |
description | Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction temperature. Furthermore, the properties of the NiOx hole transport layer (HTL) in PSCs were enhanced by the incorporation of zinc (Zn) in NiOx thin films. X-ray diffraction and X-ray photoelectron spectroscopy results revealed that the formation of NiOx was achieved at lower annealing temperature, which confirms the process of the combustion reaction. The electrical conductivity was greatly improved with Zn doping into the NiOx crystal lattice. Better photoluminescence (PL) quenching, and low PL lifetime decay were responsible for better charge separation in 5% Zn doped NiOx, which results in improved device performance of PSCs. The maximum power conversion efficiency of inverted PSCs made with pristine NiOx and 5% Zn-NiOx as the HTL was 13.62% and 14.87%, respectively. Both the devices exhibited better stability than the PEDOT:PSS (control) device in an ambient condition. |
doi_str_mv | 10.3390/coatings11060627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544697442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544697442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-96d78692a361a238e0fbdbd9b37bee60bfb855087fd6074bd19525f38ce94313</originalsourceid><addsrcrecordid>eNpdUE1LAzEUDKJgqb17DHhezcdudnOU1Vqh2II9eVmSzVtNu03WZCvtwf_uSj1IHwNvmDfMg0HompJbziW5q73qrXuPlBJBBMvP0IiRXCYipez8H79EkxjXZBhJeUHlCH2Xfqt3sbfe4WXwNcQIBr_YegMtXuytAaycwW_W1fjBd6e31Yd1eGrbbcRqAJ75dhCDcrHzocdzdYCAGx_wEoL_ihvbA371rQq4hLaNV-iiUW2Eyd8eo9X0cVXOkvni6bm8nyc1p7xPpDB5ISRTXFDFeAGk0UYbqXmuAQTRjS6yjBR5YwTJU22ozFjW8KIGmQ4JY3RzjO2C_9xB7Ku13wU3fKxYlqZC5mnKBhc5uurgYwzQVF2wWxUOFSXVb83Vac38B0QgckM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544697442</pqid></control><display><type>article</type><title>Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Thiruchelvan, Ponmudi Selvan ; Lai, Chien-Chih ; Tsai, Chih-Hung</creator><creatorcontrib>Thiruchelvan, Ponmudi Selvan ; Lai, Chien-Chih ; Tsai, Chih-Hung</creatorcontrib><description>Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction temperature. Furthermore, the properties of the NiOx hole transport layer (HTL) in PSCs were enhanced by the incorporation of zinc (Zn) in NiOx thin films. X-ray diffraction and X-ray photoelectron spectroscopy results revealed that the formation of NiOx was achieved at lower annealing temperature, which confirms the process of the combustion reaction. The electrical conductivity was greatly improved with Zn doping into the NiOx crystal lattice. Better photoluminescence (PL) quenching, and low PL lifetime decay were responsible for better charge separation in 5% Zn doped NiOx, which results in improved device performance of PSCs. The maximum power conversion efficiency of inverted PSCs made with pristine NiOx and 5% Zn-NiOx as the HTL was 13.62% and 14.87%, respectively. Both the devices exhibited better stability than the PEDOT:PSS (control) device in an ambient condition.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings11060627</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Annealing ; Combustion ; Control stability ; Crystal lattices ; Electrical resistivity ; Energy conversion efficiency ; Lasers ; Maximum power ; Metal oxides ; Morphology ; Nickel oxides ; Perovskites ; Photoelectrons ; Photoluminescence ; Photovoltaic cells ; Sol-gel processes ; Solar cells ; Thin films ; Topography ; Zinc</subject><ispartof>Coatings (Basel), 2021-06, Vol.11 (6), p.627</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-96d78692a361a238e0fbdbd9b37bee60bfb855087fd6074bd19525f38ce94313</citedby><cites>FETCH-LOGICAL-c313t-96d78692a361a238e0fbdbd9b37bee60bfb855087fd6074bd19525f38ce94313</cites><orcidid>0000-0002-3398-7409 ; 0000-0002-8572-116X ; 0000-0002-3374-8774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Thiruchelvan, Ponmudi Selvan</creatorcontrib><creatorcontrib>Lai, Chien-Chih</creatorcontrib><creatorcontrib>Tsai, Chih-Hung</creatorcontrib><title>Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells</title><title>Coatings (Basel)</title><description>Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction temperature. Furthermore, the properties of the NiOx hole transport layer (HTL) in PSCs were enhanced by the incorporation of zinc (Zn) in NiOx thin films. X-ray diffraction and X-ray photoelectron spectroscopy results revealed that the formation of NiOx was achieved at lower annealing temperature, which confirms the process of the combustion reaction. The electrical conductivity was greatly improved with Zn doping into the NiOx crystal lattice. Better photoluminescence (PL) quenching, and low PL lifetime decay were responsible for better charge separation in 5% Zn doped NiOx, which results in improved device performance of PSCs. The maximum power conversion efficiency of inverted PSCs made with pristine NiOx and 5% Zn-NiOx as the HTL was 13.62% and 14.87%, respectively. Both the devices exhibited better stability than the PEDOT:PSS (control) device in an ambient condition.</description><subject>Annealing</subject><subject>Combustion</subject><subject>Control stability</subject><subject>Crystal lattices</subject><subject>Electrical resistivity</subject><subject>Energy conversion efficiency</subject><subject>Lasers</subject><subject>Maximum power</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Nickel oxides</subject><subject>Perovskites</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>Photovoltaic cells</subject><subject>Sol-gel processes</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Topography</subject><subject>Zinc</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUE1LAzEUDKJgqb17DHhezcdudnOU1Vqh2II9eVmSzVtNu03WZCvtwf_uSj1IHwNvmDfMg0HompJbziW5q73qrXuPlBJBBMvP0IiRXCYipez8H79EkxjXZBhJeUHlCH2Xfqt3sbfe4WXwNcQIBr_YegMtXuytAaycwW_W1fjBd6e31Yd1eGrbbcRqAJ75dhCDcrHzocdzdYCAGx_wEoL_ihvbA371rQq4hLaNV-iiUW2Eyd8eo9X0cVXOkvni6bm8nyc1p7xPpDB5ISRTXFDFeAGk0UYbqXmuAQTRjS6yjBR5YwTJU22ozFjW8KIGmQ4JY3RzjO2C_9xB7Ku13wU3fKxYlqZC5mnKBhc5uurgYwzQVF2wWxUOFSXVb83Vac38B0QgckM</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Thiruchelvan, Ponmudi Selvan</creator><creator>Lai, Chien-Chih</creator><creator>Tsai, Chih-Hung</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3398-7409</orcidid><orcidid>https://orcid.org/0000-0002-8572-116X</orcidid><orcidid>https://orcid.org/0000-0002-3374-8774</orcidid></search><sort><creationdate>20210601</creationdate><title>Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells</title><author>Thiruchelvan, Ponmudi Selvan ; Lai, Chien-Chih ; Tsai, Chih-Hung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-96d78692a361a238e0fbdbd9b37bee60bfb855087fd6074bd19525f38ce94313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing</topic><topic>Combustion</topic><topic>Control stability</topic><topic>Crystal lattices</topic><topic>Electrical resistivity</topic><topic>Energy conversion efficiency</topic><topic>Lasers</topic><topic>Maximum power</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Nickel oxides</topic><topic>Perovskites</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>Photovoltaic cells</topic><topic>Sol-gel processes</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Topography</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thiruchelvan, Ponmudi Selvan</creatorcontrib><creatorcontrib>Lai, Chien-Chih</creatorcontrib><creatorcontrib>Tsai, Chih-Hung</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thiruchelvan, Ponmudi Selvan</au><au>Lai, Chien-Chih</au><au>Tsai, Chih-Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells</atitle><jtitle>Coatings (Basel)</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>627</spage><pages>627-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>Combustion processed nickel oxide (NiOx) thin film is considered as an alternative to the sol-gel processed hole transport layer for perovskite solar cells (PSCs). In this paper, NiOx thin film was prepared by the solution–combustion process at 250 °C, a temperature lower than the actual reaction temperature. Furthermore, the properties of the NiOx hole transport layer (HTL) in PSCs were enhanced by the incorporation of zinc (Zn) in NiOx thin films. X-ray diffraction and X-ray photoelectron spectroscopy results revealed that the formation of NiOx was achieved at lower annealing temperature, which confirms the process of the combustion reaction. The electrical conductivity was greatly improved with Zn doping into the NiOx crystal lattice. Better photoluminescence (PL) quenching, and low PL lifetime decay were responsible for better charge separation in 5% Zn doped NiOx, which results in improved device performance of PSCs. The maximum power conversion efficiency of inverted PSCs made with pristine NiOx and 5% Zn-NiOx as the HTL was 13.62% and 14.87%, respectively. Both the devices exhibited better stability than the PEDOT:PSS (control) device in an ambient condition.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings11060627</doi><orcidid>https://orcid.org/0000-0002-3398-7409</orcidid><orcidid>https://orcid.org/0000-0002-8572-116X</orcidid><orcidid>https://orcid.org/0000-0002-3374-8774</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2021-06, Vol.11 (6), p.627 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_2544697442 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Annealing Combustion Control stability Crystal lattices Electrical resistivity Energy conversion efficiency Lasers Maximum power Metal oxides Morphology Nickel oxides Perovskites Photoelectrons Photoluminescence Photovoltaic cells Sol-gel processes Solar cells Thin films Topography Zinc |
title | Combustion Processed Nickel Oxide and Zinc Doped Nickel Oxide Thin Films as a Hole Transport Layer for Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combustion%20Processed%20Nickel%20Oxide%20and%20Zinc%20Doped%20Nickel%20Oxide%20Thin%20Films%20as%20a%20Hole%20Transport%20Layer%20for%20Perovskite%20Solar%20Cells&rft.jtitle=Coatings%20(Basel)&rft.au=Thiruchelvan,%20Ponmudi%20Selvan&rft.date=2021-06-01&rft.volume=11&rft.issue=6&rft.spage=627&rft.pages=627-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings11060627&rft_dat=%3Cproquest_cross%3E2544697442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544697442&rft_id=info:pmid/&rfr_iscdi=true |