Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method

In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2021-07, Vol.33 (13), p.8089-8103
Hauptverfasser: Tanyildizi, A. K., Yakut, O., Taşar, B., Tatar, A. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8103
container_issue 13
container_start_page 8089
container_title Neural computing & applications
container_volume 33
creator Tanyildizi, A. K.
Yakut, O.
Taşar, B.
Tatar, A. B.
description In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums models is the human leg (with a knee and hip joint), and the other twin pendulum model is the exoskeleton robot. The movement of the human knee and hip joints in a walking pattern is recreated with a joint angle generator and applied to the joints with the help of a linear motor. The exoskeleton robot is provided to follow the movements of the leg with the help of a fuzzy controller. The control simulation with the mathematical model of the twin-double pendulum system and the fuzzy logic method was made using the MATLAB/Simulink program. The system response was analyzed and graphed for two different limb sizes (45 cm and 50 cm) and three different load conditions (no load, 25 Nm and 75 Nm). The maximum tracking errors are 3.2105° and 3.4730° for the hip and knee joint, respectively, with a 75 Nm load disturbance condition. These tracking error values can be interpreted as very low with high tracking success. The FL controller is robust to load changing and limb size-changing factors, and for this reason, it was suitable for use in LLEs.
doi_str_mv 10.1007/s00521-020-05554-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544688051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544688051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ebdb2ccd8efcc05a083a90842fd3e0504f3bf15deef453f1737c8d154b3eff663</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MYztJl6jiJVViA2srccZtShIX21FJvx5DKrFj5ZF87h3NIeSawS0DyO88gExZAikkIKUUSX5CZkxwnnCQxSmZwULE70zwc3Lh_RYARFbIGamWtg_OttQaGvZNn9R2qFqkO-zroR062to9OopfwWHXhDFO1n9gi8H21I8-YEf3TdhQMxwOY6TXjab62Nlh2Nj6kpyZsvV4dXzn5P3x4W35nKxen16W96tEc7YICVZ1lWpdF2i0BllCwcsFFCI1NUeQIAyvDJM1ohGSG5bzXBc1k6LiaEyW8Tm5mXp3zn4O6IPa2sH1caVKpYjnFiBZpNKJ0s5679ConWu60o2KgfpxqSaXKrpUvy5VHkN8CvkI92t0f9X_pL4BK_J6BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544688051</pqid></control><display><type>article</type><title>Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method</title><source>SpringerLink Journals</source><creator>Tanyildizi, A. K. ; Yakut, O. ; Taşar, B. ; Tatar, A. B.</creator><creatorcontrib>Tanyildizi, A. K. ; Yakut, O. ; Taşar, B. ; Tatar, A. B.</creatorcontrib><description>In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums models is the human leg (with a knee and hip joint), and the other twin pendulum model is the exoskeleton robot. The movement of the human knee and hip joints in a walking pattern is recreated with a joint angle generator and applied to the joints with the help of a linear motor. The exoskeleton robot is provided to follow the movements of the leg with the help of a fuzzy controller. The control simulation with the mathematical model of the twin-double pendulum system and the fuzzy logic method was made using the MATLAB/Simulink program. The system response was analyzed and graphed for two different limb sizes (45 cm and 50 cm) and three different load conditions (no load, 25 Nm and 75 Nm). The maximum tracking errors are 3.2105° and 3.4730° for the hip and knee joint, respectively, with a 75 Nm load disturbance condition. These tracking error values can be interpreted as very low with high tracking success. The FL controller is robust to load changing and limb size-changing factors, and for this reason, it was suitable for use in LLEs.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-05554-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Bearing strength ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Control methods ; Control simulation ; Controllers ; Data Mining and Knowledge Discovery ; Electric motors ; Exoskeletons ; Fuzzy control ; Fuzzy logic ; Human motion ; Image Processing and Computer Vision ; Joints (anatomy) ; Knee ; Load carrying capacity ; Mathematical analysis ; Mathematical models ; Original Article ; Pendulums ; Probability and Statistics in Computer Science ; Robots ; Robust control ; Tracking control ; Tracking errors</subject><ispartof>Neural computing &amp; applications, 2021-07, Vol.33 (13), p.8089-8103</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ebdb2ccd8efcc05a083a90842fd3e0504f3bf15deef453f1737c8d154b3eff663</citedby><cites>FETCH-LOGICAL-c319t-ebdb2ccd8efcc05a083a90842fd3e0504f3bf15deef453f1737c8d154b3eff663</cites><orcidid>0000-0003-3324-5445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-020-05554-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-020-05554-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Tanyildizi, A. K.</creatorcontrib><creatorcontrib>Yakut, O.</creatorcontrib><creatorcontrib>Taşar, B.</creatorcontrib><creatorcontrib>Tatar, A. B.</creatorcontrib><title>Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums models is the human leg (with a knee and hip joint), and the other twin pendulum model is the exoskeleton robot. The movement of the human knee and hip joints in a walking pattern is recreated with a joint angle generator and applied to the joints with the help of a linear motor. The exoskeleton robot is provided to follow the movements of the leg with the help of a fuzzy controller. The control simulation with the mathematical model of the twin-double pendulum system and the fuzzy logic method was made using the MATLAB/Simulink program. The system response was analyzed and graphed for two different limb sizes (45 cm and 50 cm) and three different load conditions (no load, 25 Nm and 75 Nm). The maximum tracking errors are 3.2105° and 3.4730° for the hip and knee joint, respectively, with a 75 Nm load disturbance condition. These tracking error values can be interpreted as very low with high tracking success. The FL controller is robust to load changing and limb size-changing factors, and for this reason, it was suitable for use in LLEs.</description><subject>Artificial Intelligence</subject><subject>Bearing strength</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Control methods</subject><subject>Control simulation</subject><subject>Controllers</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Electric motors</subject><subject>Exoskeletons</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Human motion</subject><subject>Image Processing and Computer Vision</subject><subject>Joints (anatomy)</subject><subject>Knee</subject><subject>Load carrying capacity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Pendulums</subject><subject>Probability and Statistics in Computer Science</subject><subject>Robots</subject><subject>Robust control</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MYztJl6jiJVViA2srccZtShIX21FJvx5DKrFj5ZF87h3NIeSawS0DyO88gExZAikkIKUUSX5CZkxwnnCQxSmZwULE70zwc3Lh_RYARFbIGamWtg_OttQaGvZNn9R2qFqkO-zroR062to9OopfwWHXhDFO1n9gi8H21I8-YEf3TdhQMxwOY6TXjab62Nlh2Nj6kpyZsvV4dXzn5P3x4W35nKxen16W96tEc7YICVZ1lWpdF2i0BllCwcsFFCI1NUeQIAyvDJM1ohGSG5bzXBc1k6LiaEyW8Tm5mXp3zn4O6IPa2sH1caVKpYjnFiBZpNKJ0s5679ConWu60o2KgfpxqSaXKrpUvy5VHkN8CvkI92t0f9X_pL4BK_J6BQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Tanyildizi, A. K.</creator><creator>Yakut, O.</creator><creator>Taşar, B.</creator><creator>Tatar, A. B.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3324-5445</orcidid></search><sort><creationdate>20210701</creationdate><title>Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method</title><author>Tanyildizi, A. K. ; Yakut, O. ; Taşar, B. ; Tatar, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ebdb2ccd8efcc05a083a90842fd3e0504f3bf15deef453f1737c8d154b3eff663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Bearing strength</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Control methods</topic><topic>Control simulation</topic><topic>Controllers</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Electric motors</topic><topic>Exoskeletons</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Human motion</topic><topic>Image Processing and Computer Vision</topic><topic>Joints (anatomy)</topic><topic>Knee</topic><topic>Load carrying capacity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Pendulums</topic><topic>Probability and Statistics in Computer Science</topic><topic>Robots</topic><topic>Robust control</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanyildizi, A. K.</creatorcontrib><creatorcontrib>Yakut, O.</creatorcontrib><creatorcontrib>Taşar, B.</creatorcontrib><creatorcontrib>Tatar, A. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanyildizi, A. K.</au><au>Yakut, O.</au><au>Taşar, B.</au><au>Tatar, A. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>33</volume><issue>13</issue><spage>8089</spage><epage>8103</epage><pages>8089-8103</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums models is the human leg (with a knee and hip joint), and the other twin pendulum model is the exoskeleton robot. The movement of the human knee and hip joints in a walking pattern is recreated with a joint angle generator and applied to the joints with the help of a linear motor. The exoskeleton robot is provided to follow the movements of the leg with the help of a fuzzy controller. The control simulation with the mathematical model of the twin-double pendulum system and the fuzzy logic method was made using the MATLAB/Simulink program. The system response was analyzed and graphed for two different limb sizes (45 cm and 50 cm) and three different load conditions (no load, 25 Nm and 75 Nm). The maximum tracking errors are 3.2105° and 3.4730° for the hip and knee joint, respectively, with a 75 Nm load disturbance condition. These tracking error values can be interpreted as very low with high tracking success. The FL controller is robust to load changing and limb size-changing factors, and for this reason, it was suitable for use in LLEs.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-05554-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3324-5445</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2021-07, Vol.33 (13), p.8089-8103
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2544688051
source SpringerLink Journals
subjects Artificial Intelligence
Bearing strength
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Control methods
Control simulation
Controllers
Data Mining and Knowledge Discovery
Electric motors
Exoskeletons
Fuzzy control
Fuzzy logic
Human motion
Image Processing and Computer Vision
Joints (anatomy)
Knee
Load carrying capacity
Mathematical analysis
Mathematical models
Original Article
Pendulums
Probability and Statistics in Computer Science
Robots
Robust control
Tracking control
Tracking errors
title Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20twin-double%20pendulum%20lower%20extremity%20exoskeleton%20system%20with%20fuzzy%20logic%20control%20method&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Tanyildizi,%20A.%20K.&rft.date=2021-07-01&rft.volume=33&rft.issue=13&rft.spage=8089&rft.epage=8103&rft.pages=8089-8103&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-05554-7&rft_dat=%3Cproquest_cross%3E2544688051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544688051&rft_id=info:pmid/&rfr_iscdi=true