Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method
In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums mo...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2021-07, Vol.33 (13), p.8089-8103 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8103 |
---|---|
container_issue | 13 |
container_start_page | 8089 |
container_title | Neural computing & applications |
container_volume | 33 |
creator | Tanyildizi, A. K. Yakut, O. Taşar, B. Tatar, A. B. |
description | In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums models is the human leg (with a knee and hip joint), and the other twin pendulum model is the exoskeleton robot. The movement of the human knee and hip joints in a walking pattern is recreated with a joint angle generator and applied to the joints with the help of a linear motor. The exoskeleton robot is provided to follow the movements of the leg with the help of a fuzzy controller. The control simulation with the mathematical model of the twin-double pendulum system and the fuzzy logic method was made using the MATLAB/Simulink program. The system response was analyzed and graphed for two different limb sizes (45 cm and 50 cm) and three different load conditions (no load, 25 Nm and 75 Nm). The maximum tracking errors are 3.2105° and 3.4730° for the hip and knee joint, respectively, with a 75 Nm load disturbance condition. These tracking error values can be interpreted as very low with high tracking success. The FL controller is robust to load changing and limb size-changing factors, and for this reason, it was suitable for use in LLEs. |
doi_str_mv | 10.1007/s00521-020-05554-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544688051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544688051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ebdb2ccd8efcc05a083a90842fd3e0504f3bf15deef453f1737c8d154b3eff663</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MYztJl6jiJVViA2srccZtShIX21FJvx5DKrFj5ZF87h3NIeSawS0DyO88gExZAikkIKUUSX5CZkxwnnCQxSmZwULE70zwc3Lh_RYARFbIGamWtg_OttQaGvZNn9R2qFqkO-zroR062to9OopfwWHXhDFO1n9gi8H21I8-YEf3TdhQMxwOY6TXjab62Nlh2Nj6kpyZsvV4dXzn5P3x4W35nKxen16W96tEc7YICVZ1lWpdF2i0BllCwcsFFCI1NUeQIAyvDJM1ohGSG5bzXBc1k6LiaEyW8Tm5mXp3zn4O6IPa2sH1caVKpYjnFiBZpNKJ0s5679ConWu60o2KgfpxqSaXKrpUvy5VHkN8CvkI92t0f9X_pL4BK_J6BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544688051</pqid></control><display><type>article</type><title>Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method</title><source>SpringerLink Journals</source><creator>Tanyildizi, A. K. ; Yakut, O. ; Taşar, B. ; Tatar, A. B.</creator><creatorcontrib>Tanyildizi, A. K. ; Yakut, O. ; Taşar, B. ; Tatar, A. B.</creatorcontrib><description>In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums models is the human leg (with a knee and hip joint), and the other twin pendulum model is the exoskeleton robot. The movement of the human knee and hip joints in a walking pattern is recreated with a joint angle generator and applied to the joints with the help of a linear motor. The exoskeleton robot is provided to follow the movements of the leg with the help of a fuzzy controller. The control simulation with the mathematical model of the twin-double pendulum system and the fuzzy logic method was made using the MATLAB/Simulink program. The system response was analyzed and graphed for two different limb sizes (45 cm and 50 cm) and three different load conditions (no load, 25 Nm and 75 Nm). The maximum tracking errors are 3.2105° and 3.4730° for the hip and knee joint, respectively, with a 75 Nm load disturbance condition. These tracking error values can be interpreted as very low with high tracking success. The FL controller is robust to load changing and limb size-changing factors, and for this reason, it was suitable for use in LLEs.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-05554-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Bearing strength ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Control methods ; Control simulation ; Controllers ; Data Mining and Knowledge Discovery ; Electric motors ; Exoskeletons ; Fuzzy control ; Fuzzy logic ; Human motion ; Image Processing and Computer Vision ; Joints (anatomy) ; Knee ; Load carrying capacity ; Mathematical analysis ; Mathematical models ; Original Article ; Pendulums ; Probability and Statistics in Computer Science ; Robots ; Robust control ; Tracking control ; Tracking errors</subject><ispartof>Neural computing & applications, 2021-07, Vol.33 (13), p.8089-8103</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ebdb2ccd8efcc05a083a90842fd3e0504f3bf15deef453f1737c8d154b3eff663</citedby><cites>FETCH-LOGICAL-c319t-ebdb2ccd8efcc05a083a90842fd3e0504f3bf15deef453f1737c8d154b3eff663</cites><orcidid>0000-0003-3324-5445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-020-05554-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-020-05554-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Tanyildizi, A. K.</creatorcontrib><creatorcontrib>Yakut, O.</creatorcontrib><creatorcontrib>Taşar, B.</creatorcontrib><creatorcontrib>Tatar, A. B.</creatorcontrib><title>Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums models is the human leg (with a knee and hip joint), and the other twin pendulum model is the exoskeleton robot. The movement of the human knee and hip joints in a walking pattern is recreated with a joint angle generator and applied to the joints with the help of a linear motor. The exoskeleton robot is provided to follow the movements of the leg with the help of a fuzzy controller. The control simulation with the mathematical model of the twin-double pendulum system and the fuzzy logic method was made using the MATLAB/Simulink program. The system response was analyzed and graphed for two different limb sizes (45 cm and 50 cm) and three different load conditions (no load, 25 Nm and 75 Nm). The maximum tracking errors are 3.2105° and 3.4730° for the hip and knee joint, respectively, with a 75 Nm load disturbance condition. These tracking error values can be interpreted as very low with high tracking success. The FL controller is robust to load changing and limb size-changing factors, and for this reason, it was suitable for use in LLEs.</description><subject>Artificial Intelligence</subject><subject>Bearing strength</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Control methods</subject><subject>Control simulation</subject><subject>Controllers</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Electric motors</subject><subject>Exoskeletons</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Human motion</subject><subject>Image Processing and Computer Vision</subject><subject>Joints (anatomy)</subject><subject>Knee</subject><subject>Load carrying capacity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Original Article</subject><subject>Pendulums</subject><subject>Probability and Statistics in Computer Science</subject><subject>Robots</subject><subject>Robust control</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssQ6MYztJl6jiJVViA2srccZtShIX21FJvx5DKrFj5ZF87h3NIeSawS0DyO88gExZAikkIKUUSX5CZkxwnnCQxSmZwULE70zwc3Lh_RYARFbIGamWtg_OttQaGvZNn9R2qFqkO-zroR062to9OopfwWHXhDFO1n9gi8H21I8-YEf3TdhQMxwOY6TXjab62Nlh2Nj6kpyZsvV4dXzn5P3x4W35nKxen16W96tEc7YICVZ1lWpdF2i0BllCwcsFFCI1NUeQIAyvDJM1ohGSG5bzXBc1k6LiaEyW8Tm5mXp3zn4O6IPa2sH1caVKpYjnFiBZpNKJ0s5679ConWu60o2KgfpxqSaXKrpUvy5VHkN8CvkI92t0f9X_pL4BK_J6BQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Tanyildizi, A. K.</creator><creator>Yakut, O.</creator><creator>Taşar, B.</creator><creator>Tatar, A. B.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-3324-5445</orcidid></search><sort><creationdate>20210701</creationdate><title>Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method</title><author>Tanyildizi, A. K. ; Yakut, O. ; Taşar, B. ; Tatar, A. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ebdb2ccd8efcc05a083a90842fd3e0504f3bf15deef453f1737c8d154b3eff663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Bearing strength</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Control methods</topic><topic>Control simulation</topic><topic>Controllers</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Electric motors</topic><topic>Exoskeletons</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Human motion</topic><topic>Image Processing and Computer Vision</topic><topic>Joints (anatomy)</topic><topic>Knee</topic><topic>Load carrying capacity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Original Article</topic><topic>Pendulums</topic><topic>Probability and Statistics in Computer Science</topic><topic>Robots</topic><topic>Robust control</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanyildizi, A. K.</creatorcontrib><creatorcontrib>Yakut, O.</creatorcontrib><creatorcontrib>Taşar, B.</creatorcontrib><creatorcontrib>Tatar, A. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanyildizi, A. K.</au><au>Yakut, O.</au><au>Taşar, B.</au><au>Tatar, A. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>33</volume><issue>13</issue><spage>8089</spage><epage>8103</epage><pages>8089-8103</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this article, a two degree of freedom lower-limb exoskeleton (LLE) design control is developed to reduce the fatigue level of healthy people and increase their load-carrying capacity. The LLE robot system is designed by comparing it to the twin-double pendulum system. One of the twin pendulums models is the human leg (with a knee and hip joint), and the other twin pendulum model is the exoskeleton robot. The movement of the human knee and hip joints in a walking pattern is recreated with a joint angle generator and applied to the joints with the help of a linear motor. The exoskeleton robot is provided to follow the movements of the leg with the help of a fuzzy controller. The control simulation with the mathematical model of the twin-double pendulum system and the fuzzy logic method was made using the MATLAB/Simulink program. The system response was analyzed and graphed for two different limb sizes (45 cm and 50 cm) and three different load conditions (no load, 25 Nm and 75 Nm). The maximum tracking errors are 3.2105° and 3.4730° for the hip and knee joint, respectively, with a 75 Nm load disturbance condition. These tracking error values can be interpreted as very low with high tracking success. The FL controller is robust to load changing and limb size-changing factors, and for this reason, it was suitable for use in LLEs.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-05554-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3324-5445</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2021-07, Vol.33 (13), p.8089-8103 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2544688051 |
source | SpringerLink Journals |
subjects | Artificial Intelligence Bearing strength Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Control methods Control simulation Controllers Data Mining and Knowledge Discovery Electric motors Exoskeletons Fuzzy control Fuzzy logic Human motion Image Processing and Computer Vision Joints (anatomy) Knee Load carrying capacity Mathematical analysis Mathematical models Original Article Pendulums Probability and Statistics in Computer Science Robots Robust control Tracking control Tracking errors |
title | Control of twin-double pendulum lower extremity exoskeleton system with fuzzy logic control method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T10%3A33%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20twin-double%20pendulum%20lower%20extremity%20exoskeleton%20system%20with%20fuzzy%20logic%20control%20method&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Tanyildizi,%20A.%20K.&rft.date=2021-07-01&rft.volume=33&rft.issue=13&rft.spage=8089&rft.epage=8103&rft.pages=8089-8103&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-05554-7&rft_dat=%3Cproquest_cross%3E2544688051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544688051&rft_id=info:pmid/&rfr_iscdi=true |