Thermophilic biodigestion of fermented sugarcane molasses in high-rate structured-bed reactors: Alkalinization strategies define the operating limits

[Display omitted] •Organic matter conversion was unsatisfactory ( 3.0 g-COD g−1VSS d−1 was associated with high and stable CH4 production.•Excess VFA levels in the feeding chambers triggered organic overloading conditions. Energetic exploitation of sugarcane-derived byproducts via anaerobic digestio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2021-07, Vol.239, p.114203, Article 114203
Hauptverfasser: Fuess, Lucas Tadeu, Zaiat, Marcelo, Nascimento, Claudio Augusto Oller do
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 114203
container_title Energy conversion and management
container_volume 239
creator Fuess, Lucas Tadeu
Zaiat, Marcelo
Nascimento, Claudio Augusto Oller do
description [Display omitted] •Organic matter conversion was unsatisfactory ( 3.0 g-COD g−1VSS d−1 was associated with high and stable CH4 production.•Excess VFA levels in the feeding chambers triggered organic overloading conditions. Energetic exploitation of sugarcane-derived byproducts via anaerobic digestion (AD) has recently been highlighted as an alternative to the conventional ethanol-producing approach. In this context, the thermophilic (55 °C) methane production from fermented molasses was assessed in the long-term (>200 d) continuous operation of two anaerobic structured-bed reactors. Two types of alkalinization strategies, namely, NaHCO3 dosing (RM1) and NaOH dosing coupled to effluent recirculation (RM2) were compared, as well as different levels of organic loading rate (OLR) and hydraulic retention time (HRT) were applied to reach limiting operating conditions. Both alkalinization strategies provided an equivalent buffer control up to an OLR of 7.5 kg-CODt m−3 d−1, from which unwanted accumulation of organic acids was observed in RM2. NaHCO3 dosing enabled doubling the OLR (15.0 kg-CODt m−3 d−1) without performance deterioration, i.e., organic matter removal > 80.0% and maximum methane yield values. A detailed assessment of the food-to-microorganism ratio demonstrated the maintenance of stable operating conditions at excess substrate availability (>3.0 g-CODt g−1VSS d−1) in the feeding chamber (FDC) of the reactors, in which substrate conversion exceeded 70.0%. Organic overloads occurred only when biomass retention reached a saturation level in the FDC, hampering the uptake of volatile organic acids, regardless of the operating condition. In any case, the wide range of operating conditions (OLR = 2.5–15.0 kg-CODt m−3 d−1 and HRT = 24.0–36.0 h) associated with maximized methane production characterized a highly flexible process, which enables varied design arrangements in full-scale AD plants.
doi_str_mv 10.1016/j.enconman.2021.114203
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544546620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890421003794</els_id><sourcerecordid>2544546620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-9d1875d6a060e756ce11875c8c456b42d4848113c8950a7b8e7379ef2fafa7fa3</originalsourceid><addsrcrecordid>eNqFkc2O1DAQhC0EEsPAKyBLnDPYjuMknFit-JNW2stytjx2O-khsQfbQYL34H3xMHDek6X2V9WqLkJec3bgjKu3pwMEG8NqwkEwwQ-cS8HaJ2THh35shBD9U7JjfFTNMDL5nLzI-cQYazumduT3wwxpjecZF7T0iNHhBLlgDDR66usfhAKO5m0yyZoAdI2LyRkyxUBnnOYmmQI0l7TZsiVwzbHiCYwtMeV39Gb5ZhYM-Mv8Na1cxSesegceq1-ZgcYz1DGGiS64YskvyTNvlgyv_r178vXjh4fbz83d_acvtzd3jW0lK83oasTOKcMUg75TFvhlYAcrO3WUwslBDpy3dhg7ZvrjAH3bj-CFN9703rR78ubqe07x-1Zz61PcUqgrteik7KRS9ZR7oq6UTTHnBF6fE64m_dSc6UsF-qT_V6AvFehrBVX4_iqEmuEHQtLZYiXBYQJbtIv4mMUfkzCWxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544546620</pqid></control><display><type>article</type><title>Thermophilic biodigestion of fermented sugarcane molasses in high-rate structured-bed reactors: Alkalinization strategies define the operating limits</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Fuess, Lucas Tadeu ; Zaiat, Marcelo ; Nascimento, Claudio Augusto Oller do</creator><creatorcontrib>Fuess, Lucas Tadeu ; Zaiat, Marcelo ; Nascimento, Claudio Augusto Oller do</creatorcontrib><description>[Display omitted] •Organic matter conversion was unsatisfactory (&lt;80%) when dosing only NaOH.•NaHCO3 dosing and effluent recirculation performed equally up to 7.5 kg-COD m−3 d−1.•2-fold higher (15 vs. 7.5 kg-COD m−3 d−1) organic load was reached by dosing NaHCO3.•F/M ratio &gt; 3.0 g-COD g−1VSS d−1 was associated with high and stable CH4 production.•Excess VFA levels in the feeding chambers triggered organic overloading conditions. Energetic exploitation of sugarcane-derived byproducts via anaerobic digestion (AD) has recently been highlighted as an alternative to the conventional ethanol-producing approach. In this context, the thermophilic (55 °C) methane production from fermented molasses was assessed in the long-term (&gt;200 d) continuous operation of two anaerobic structured-bed reactors. Two types of alkalinization strategies, namely, NaHCO3 dosing (RM1) and NaOH dosing coupled to effluent recirculation (RM2) were compared, as well as different levels of organic loading rate (OLR) and hydraulic retention time (HRT) were applied to reach limiting operating conditions. Both alkalinization strategies provided an equivalent buffer control up to an OLR of 7.5 kg-CODt m−3 d−1, from which unwanted accumulation of organic acids was observed in RM2. NaHCO3 dosing enabled doubling the OLR (15.0 kg-CODt m−3 d−1) without performance deterioration, i.e., organic matter removal &gt; 80.0% and maximum methane yield values. A detailed assessment of the food-to-microorganism ratio demonstrated the maintenance of stable operating conditions at excess substrate availability (&gt;3.0 g-CODt g−1VSS d−1) in the feeding chamber (FDC) of the reactors, in which substrate conversion exceeded 70.0%. Organic overloads occurred only when biomass retention reached a saturation level in the FDC, hampering the uptake of volatile organic acids, regardless of the operating condition. In any case, the wide range of operating conditions (OLR = 2.5–15.0 kg-CODt m−3 d−1 and HRT = 24.0–36.0 h) associated with maximized methane production characterized a highly flexible process, which enables varied design arrangements in full-scale AD plants.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2021.114203</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alkalinization strategy ; Anaerobic digestion ; AnSTBR ; Bioenergy recovery ; Biomethanation ; Bioreactors ; Dosage ; Ethanol ; Exploitation ; Hydraulic retention time ; Load distribution ; Loading rate ; Methane ; Molasses ; Organic acids ; Organic loading ; Organic matter ; Overloading ; Performance degradation ; Reactors ; Retention ; Retention time ; Sodium bicarbonate ; Sodium hydroxide ; Specific organic loading rate ; Substrates ; Sugarcane ; Sugarcane biorefinery ; Syrups &amp; sweeteners ; Thermophilic digestion</subject><ispartof>Energy conversion and management, 2021-07, Vol.239, p.114203, Article 114203</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Jul 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-9d1875d6a060e756ce11875c8c456b42d4848113c8950a7b8e7379ef2fafa7fa3</citedby><cites>FETCH-LOGICAL-c340t-9d1875d6a060e756ce11875c8c456b42d4848113c8950a7b8e7379ef2fafa7fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890421003794$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Fuess, Lucas Tadeu</creatorcontrib><creatorcontrib>Zaiat, Marcelo</creatorcontrib><creatorcontrib>Nascimento, Claudio Augusto Oller do</creatorcontrib><title>Thermophilic biodigestion of fermented sugarcane molasses in high-rate structured-bed reactors: Alkalinization strategies define the operating limits</title><title>Energy conversion and management</title><description>[Display omitted] •Organic matter conversion was unsatisfactory (&lt;80%) when dosing only NaOH.•NaHCO3 dosing and effluent recirculation performed equally up to 7.5 kg-COD m−3 d−1.•2-fold higher (15 vs. 7.5 kg-COD m−3 d−1) organic load was reached by dosing NaHCO3.•F/M ratio &gt; 3.0 g-COD g−1VSS d−1 was associated with high and stable CH4 production.•Excess VFA levels in the feeding chambers triggered organic overloading conditions. Energetic exploitation of sugarcane-derived byproducts via anaerobic digestion (AD) has recently been highlighted as an alternative to the conventional ethanol-producing approach. In this context, the thermophilic (55 °C) methane production from fermented molasses was assessed in the long-term (&gt;200 d) continuous operation of two anaerobic structured-bed reactors. Two types of alkalinization strategies, namely, NaHCO3 dosing (RM1) and NaOH dosing coupled to effluent recirculation (RM2) were compared, as well as different levels of organic loading rate (OLR) and hydraulic retention time (HRT) were applied to reach limiting operating conditions. Both alkalinization strategies provided an equivalent buffer control up to an OLR of 7.5 kg-CODt m−3 d−1, from which unwanted accumulation of organic acids was observed in RM2. NaHCO3 dosing enabled doubling the OLR (15.0 kg-CODt m−3 d−1) without performance deterioration, i.e., organic matter removal &gt; 80.0% and maximum methane yield values. A detailed assessment of the food-to-microorganism ratio demonstrated the maintenance of stable operating conditions at excess substrate availability (&gt;3.0 g-CODt g−1VSS d−1) in the feeding chamber (FDC) of the reactors, in which substrate conversion exceeded 70.0%. Organic overloads occurred only when biomass retention reached a saturation level in the FDC, hampering the uptake of volatile organic acids, regardless of the operating condition. In any case, the wide range of operating conditions (OLR = 2.5–15.0 kg-CODt m−3 d−1 and HRT = 24.0–36.0 h) associated with maximized methane production characterized a highly flexible process, which enables varied design arrangements in full-scale AD plants.</description><subject>Alkalinization strategy</subject><subject>Anaerobic digestion</subject><subject>AnSTBR</subject><subject>Bioenergy recovery</subject><subject>Biomethanation</subject><subject>Bioreactors</subject><subject>Dosage</subject><subject>Ethanol</subject><subject>Exploitation</subject><subject>Hydraulic retention time</subject><subject>Load distribution</subject><subject>Loading rate</subject><subject>Methane</subject><subject>Molasses</subject><subject>Organic acids</subject><subject>Organic loading</subject><subject>Organic matter</subject><subject>Overloading</subject><subject>Performance degradation</subject><subject>Reactors</subject><subject>Retention</subject><subject>Retention time</subject><subject>Sodium bicarbonate</subject><subject>Sodium hydroxide</subject><subject>Specific organic loading rate</subject><subject>Substrates</subject><subject>Sugarcane</subject><subject>Sugarcane biorefinery</subject><subject>Syrups &amp; sweeteners</subject><subject>Thermophilic digestion</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkc2O1DAQhC0EEsPAKyBLnDPYjuMknFit-JNW2stytjx2O-khsQfbQYL34H3xMHDek6X2V9WqLkJec3bgjKu3pwMEG8NqwkEwwQ-cS8HaJ2THh35shBD9U7JjfFTNMDL5nLzI-cQYazumduT3wwxpjecZF7T0iNHhBLlgDDR66usfhAKO5m0yyZoAdI2LyRkyxUBnnOYmmQI0l7TZsiVwzbHiCYwtMeV39Gb5ZhYM-Mv8Na1cxSesegceq1-ZgcYz1DGGiS64YskvyTNvlgyv_r178vXjh4fbz83d_acvtzd3jW0lK83oasTOKcMUg75TFvhlYAcrO3WUwslBDpy3dhg7ZvrjAH3bj-CFN9703rR78ubqe07x-1Zz61PcUqgrteik7KRS9ZR7oq6UTTHnBF6fE64m_dSc6UsF-qT_V6AvFehrBVX4_iqEmuEHQtLZYiXBYQJbtIv4mMUfkzCWxA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Fuess, Lucas Tadeu</creator><creator>Zaiat, Marcelo</creator><creator>Nascimento, Claudio Augusto Oller do</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210701</creationdate><title>Thermophilic biodigestion of fermented sugarcane molasses in high-rate structured-bed reactors: Alkalinization strategies define the operating limits</title><author>Fuess, Lucas Tadeu ; Zaiat, Marcelo ; Nascimento, Claudio Augusto Oller do</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-9d1875d6a060e756ce11875c8c456b42d4848113c8950a7b8e7379ef2fafa7fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkalinization strategy</topic><topic>Anaerobic digestion</topic><topic>AnSTBR</topic><topic>Bioenergy recovery</topic><topic>Biomethanation</topic><topic>Bioreactors</topic><topic>Dosage</topic><topic>Ethanol</topic><topic>Exploitation</topic><topic>Hydraulic retention time</topic><topic>Load distribution</topic><topic>Loading rate</topic><topic>Methane</topic><topic>Molasses</topic><topic>Organic acids</topic><topic>Organic loading</topic><topic>Organic matter</topic><topic>Overloading</topic><topic>Performance degradation</topic><topic>Reactors</topic><topic>Retention</topic><topic>Retention time</topic><topic>Sodium bicarbonate</topic><topic>Sodium hydroxide</topic><topic>Specific organic loading rate</topic><topic>Substrates</topic><topic>Sugarcane</topic><topic>Sugarcane biorefinery</topic><topic>Syrups &amp; sweeteners</topic><topic>Thermophilic digestion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuess, Lucas Tadeu</creatorcontrib><creatorcontrib>Zaiat, Marcelo</creatorcontrib><creatorcontrib>Nascimento, Claudio Augusto Oller do</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuess, Lucas Tadeu</au><au>Zaiat, Marcelo</au><au>Nascimento, Claudio Augusto Oller do</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermophilic biodigestion of fermented sugarcane molasses in high-rate structured-bed reactors: Alkalinization strategies define the operating limits</atitle><jtitle>Energy conversion and management</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>239</volume><spage>114203</spage><pages>114203-</pages><artnum>114203</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>[Display omitted] •Organic matter conversion was unsatisfactory (&lt;80%) when dosing only NaOH.•NaHCO3 dosing and effluent recirculation performed equally up to 7.5 kg-COD m−3 d−1.•2-fold higher (15 vs. 7.5 kg-COD m−3 d−1) organic load was reached by dosing NaHCO3.•F/M ratio &gt; 3.0 g-COD g−1VSS d−1 was associated with high and stable CH4 production.•Excess VFA levels in the feeding chambers triggered organic overloading conditions. Energetic exploitation of sugarcane-derived byproducts via anaerobic digestion (AD) has recently been highlighted as an alternative to the conventional ethanol-producing approach. In this context, the thermophilic (55 °C) methane production from fermented molasses was assessed in the long-term (&gt;200 d) continuous operation of two anaerobic structured-bed reactors. Two types of alkalinization strategies, namely, NaHCO3 dosing (RM1) and NaOH dosing coupled to effluent recirculation (RM2) were compared, as well as different levels of organic loading rate (OLR) and hydraulic retention time (HRT) were applied to reach limiting operating conditions. Both alkalinization strategies provided an equivalent buffer control up to an OLR of 7.5 kg-CODt m−3 d−1, from which unwanted accumulation of organic acids was observed in RM2. NaHCO3 dosing enabled doubling the OLR (15.0 kg-CODt m−3 d−1) without performance deterioration, i.e., organic matter removal &gt; 80.0% and maximum methane yield values. A detailed assessment of the food-to-microorganism ratio demonstrated the maintenance of stable operating conditions at excess substrate availability (&gt;3.0 g-CODt g−1VSS d−1) in the feeding chamber (FDC) of the reactors, in which substrate conversion exceeded 70.0%. Organic overloads occurred only when biomass retention reached a saturation level in the FDC, hampering the uptake of volatile organic acids, regardless of the operating condition. In any case, the wide range of operating conditions (OLR = 2.5–15.0 kg-CODt m−3 d−1 and HRT = 24.0–36.0 h) associated with maximized methane production characterized a highly flexible process, which enables varied design arrangements in full-scale AD plants.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2021.114203</doi></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2021-07, Vol.239, p.114203, Article 114203
issn 0196-8904
1879-2227
language eng
recordid cdi_proquest_journals_2544546620
source Elsevier ScienceDirect Journals Complete
subjects Alkalinization strategy
Anaerobic digestion
AnSTBR
Bioenergy recovery
Biomethanation
Bioreactors
Dosage
Ethanol
Exploitation
Hydraulic retention time
Load distribution
Loading rate
Methane
Molasses
Organic acids
Organic loading
Organic matter
Overloading
Performance degradation
Reactors
Retention
Retention time
Sodium bicarbonate
Sodium hydroxide
Specific organic loading rate
Substrates
Sugarcane
Sugarcane biorefinery
Syrups & sweeteners
Thermophilic digestion
title Thermophilic biodigestion of fermented sugarcane molasses in high-rate structured-bed reactors: Alkalinization strategies define the operating limits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermophilic%20biodigestion%20of%20fermented%20sugarcane%20molasses%20in%20high-rate%20structured-bed%20reactors:%20Alkalinization%20strategies%20define%20the%20operating%20limits&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Fuess,%20Lucas%20Tadeu&rft.date=2021-07-01&rft.volume=239&rft.spage=114203&rft.pages=114203-&rft.artnum=114203&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2021.114203&rft_dat=%3Cproquest_cross%3E2544546620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544546620&rft_id=info:pmid/&rft_els_id=S0196890421003794&rfr_iscdi=true