Eliminating Dendrites and Side Reactions via a Multifunctional ZnSe Protective Layer toward Advanced Aqueous Zn Metal Batteries

The development of aqueous Zn metal batteries (AZMBs) is impeded by severe corrosion, H2 evolution, and dendrite formation issues. In addition, the inability of AZMBs to achieve a large capacity also hinders their commercialization. Here, a multifunctional ZnSe protective layer is reported to synchr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-06, Vol.31 (26), p.n/a
Hauptverfasser: Zhang, Long, Zhang, Biao, Zhang, Teng, Li, Tao, Shi, Tengfei, Li, Wei, Shen, Tong, Huang, Xiaoxiao, Xu, Junjie, Zhang, Xiaoguang, Wang, Zhiyi, Hou, Yanglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page
container_title Advanced functional materials
container_volume 31
creator Zhang, Long
Zhang, Biao
Zhang, Teng
Li, Tao
Shi, Tengfei
Li, Wei
Shen, Tong
Huang, Xiaoxiao
Xu, Junjie
Zhang, Xiaoguang
Wang, Zhiyi
Hou, Yanglong
description The development of aqueous Zn metal batteries (AZMBs) is impeded by severe corrosion, H2 evolution, and dendrite formation issues. In addition, the inability of AZMBs to achieve a large capacity also hinders their commercialization. Here, a multifunctional ZnSe protective layer is reported to synchronously solve the above issues. The ZnSe layer can efficiently provide anticorrosion while also suppressing hydrogen evolution. Systematic analyses of the mechanism suggest that the low Zn affinity of ZnSe and the unbalanced charge distribution at the interface can promote a uniform distribution of Zn2+ and accelerate Zn2+ migration, thus realizing dendrite‐free behavior. Therefore, the Zn@ZnSe symmetric cell exhibits notable rate performance and cycling stability (1500 h). Moreover, this symmetric cell can still stabilize with a low polarization (50 mV), even at 10 mA cm−2 with 5 mAh cm−2. The full cell paired with MnO2 achieves a long lifespan (1800 cycles) with a Coulombic efficiency near 100%. Therefore, this strategy for eliminating dendrites and side reactions at a high rate with a large capacity provides a promising solution for the development of AZMBs. A multifunctional ZnSe protective layer is fabricated to eliminate Zn dendrites and side reactions synchronously. The Zn@ZnSe symmetric cell exhibits prominent stability even at 10 mA cm‐2 with 5 mAh cm‐2. The full cell achieves a long lifespan with a Coulombic efficiency nearing 100%. The mechanism is deeply investigated via in situ experiments and systematic density functional theory calculations.
doi_str_mv 10.1002/adfm.202100186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544487797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544487797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-cdb886319873749f72f5fbb392297c82c4adbed0cfb8d090dd8adbbed67320a33</originalsourceid><addsrcrecordid>eNqFkM1PAjEQxTdGExG9em7iGezHsu0eEURNIBrRxHhpuu2sKVl2se1COPmvW8Tg0dPMvPzeZOYlySXBfYIxvVamXPYppnEgIjtKOiQjWY9hKo4PPXk7Tc68X0SEc5Z2kq_byi5trYKtP9AYauNsAI9UbdDcGkDPoHSwTe3R2iqk0Kytgi3b-kdUFXqv54CeXBMgKmtAU7UFh0KzUc6goVmrWkNsPltoWh9pNIMQbTcqBHAW_HlyUqrKw8Vv7Savk9uX0X1v-nj3MBpOe5oRnvW0KYTIGMkFZzzNS07LQVkULKc051pQnSpTgMG6LITBOTZGRCEqGWcUK8a6ydV-78o18Rgf5KJpXfzASzpI01RwnvNI9feUdo33Dkq5cnap3FYSLHchy13I8hByNOR7w8ZWsP2HlsPxZPbn_QYNeoKu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544487797</pqid></control><display><type>article</type><title>Eliminating Dendrites and Side Reactions via a Multifunctional ZnSe Protective Layer toward Advanced Aqueous Zn Metal Batteries</title><source>Wiley Online Library All Journals</source><creator>Zhang, Long ; Zhang, Biao ; Zhang, Teng ; Li, Tao ; Shi, Tengfei ; Li, Wei ; Shen, Tong ; Huang, Xiaoxiao ; Xu, Junjie ; Zhang, Xiaoguang ; Wang, Zhiyi ; Hou, Yanglong</creator><creatorcontrib>Zhang, Long ; Zhang, Biao ; Zhang, Teng ; Li, Tao ; Shi, Tengfei ; Li, Wei ; Shen, Tong ; Huang, Xiaoxiao ; Xu, Junjie ; Zhang, Xiaoguang ; Wang, Zhiyi ; Hou, Yanglong</creatorcontrib><description>The development of aqueous Zn metal batteries (AZMBs) is impeded by severe corrosion, H2 evolution, and dendrite formation issues. In addition, the inability of AZMBs to achieve a large capacity also hinders their commercialization. Here, a multifunctional ZnSe protective layer is reported to synchronously solve the above issues. The ZnSe layer can efficiently provide anticorrosion while also suppressing hydrogen evolution. Systematic analyses of the mechanism suggest that the low Zn affinity of ZnSe and the unbalanced charge distribution at the interface can promote a uniform distribution of Zn2+ and accelerate Zn2+ migration, thus realizing dendrite‐free behavior. Therefore, the Zn@ZnSe symmetric cell exhibits notable rate performance and cycling stability (1500 h). Moreover, this symmetric cell can still stabilize with a low polarization (50 mV), even at 10 mA cm−2 with 5 mAh cm−2. The full cell paired with MnO2 achieves a long lifespan (1800 cycles) with a Coulombic efficiency near 100%. Therefore, this strategy for eliminating dendrites and side reactions at a high rate with a large capacity provides a promising solution for the development of AZMBs. A multifunctional ZnSe protective layer is fabricated to eliminate Zn dendrites and side reactions synchronously. The Zn@ZnSe symmetric cell exhibits prominent stability even at 10 mA cm‐2 with 5 mAh cm‐2. The full cell achieves a long lifespan with a Coulombic efficiency nearing 100%. The mechanism is deeply investigated via in situ experiments and systematic density functional theory calculations.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202100186</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>aqueous Zn metal batteries ; Charge distribution ; Commercialization ; Corrosion prevention ; dendrites ; Dendritic structure ; Hydrogen evolution ; interfacial charge distributions ; Manganese dioxide ; Materials science ; multifunctional protective layers ; side reactions ; Zinc ; Zn affinities</subject><ispartof>Advanced functional materials, 2021-06, Vol.31 (26), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-cdb886319873749f72f5fbb392297c82c4adbed0cfb8d090dd8adbbed67320a33</citedby><cites>FETCH-LOGICAL-c3176-cdb886319873749f72f5fbb392297c82c4adbed0cfb8d090dd8adbbed67320a33</cites><orcidid>0000-0003-0579-4594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202100186$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202100186$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Zhang, Biao</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Shi, Tengfei</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Shen, Tong</creatorcontrib><creatorcontrib>Huang, Xiaoxiao</creatorcontrib><creatorcontrib>Xu, Junjie</creatorcontrib><creatorcontrib>Zhang, Xiaoguang</creatorcontrib><creatorcontrib>Wang, Zhiyi</creatorcontrib><creatorcontrib>Hou, Yanglong</creatorcontrib><title>Eliminating Dendrites and Side Reactions via a Multifunctional ZnSe Protective Layer toward Advanced Aqueous Zn Metal Batteries</title><title>Advanced functional materials</title><description>The development of aqueous Zn metal batteries (AZMBs) is impeded by severe corrosion, H2 evolution, and dendrite formation issues. In addition, the inability of AZMBs to achieve a large capacity also hinders their commercialization. Here, a multifunctional ZnSe protective layer is reported to synchronously solve the above issues. The ZnSe layer can efficiently provide anticorrosion while also suppressing hydrogen evolution. Systematic analyses of the mechanism suggest that the low Zn affinity of ZnSe and the unbalanced charge distribution at the interface can promote a uniform distribution of Zn2+ and accelerate Zn2+ migration, thus realizing dendrite‐free behavior. Therefore, the Zn@ZnSe symmetric cell exhibits notable rate performance and cycling stability (1500 h). Moreover, this symmetric cell can still stabilize with a low polarization (50 mV), even at 10 mA cm−2 with 5 mAh cm−2. The full cell paired with MnO2 achieves a long lifespan (1800 cycles) with a Coulombic efficiency near 100%. Therefore, this strategy for eliminating dendrites and side reactions at a high rate with a large capacity provides a promising solution for the development of AZMBs. A multifunctional ZnSe protective layer is fabricated to eliminate Zn dendrites and side reactions synchronously. The Zn@ZnSe symmetric cell exhibits prominent stability even at 10 mA cm‐2 with 5 mAh cm‐2. The full cell achieves a long lifespan with a Coulombic efficiency nearing 100%. The mechanism is deeply investigated via in situ experiments and systematic density functional theory calculations.</description><subject>aqueous Zn metal batteries</subject><subject>Charge distribution</subject><subject>Commercialization</subject><subject>Corrosion prevention</subject><subject>dendrites</subject><subject>Dendritic structure</subject><subject>Hydrogen evolution</subject><subject>interfacial charge distributions</subject><subject>Manganese dioxide</subject><subject>Materials science</subject><subject>multifunctional protective layers</subject><subject>side reactions</subject><subject>Zinc</subject><subject>Zn affinities</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1PAjEQxTdGExG9em7iGezHsu0eEURNIBrRxHhpuu2sKVl2se1COPmvW8Tg0dPMvPzeZOYlySXBfYIxvVamXPYppnEgIjtKOiQjWY9hKo4PPXk7Tc68X0SEc5Z2kq_byi5trYKtP9AYauNsAI9UbdDcGkDPoHSwTe3R2iqk0Kytgi3b-kdUFXqv54CeXBMgKmtAU7UFh0KzUc6goVmrWkNsPltoWh9pNIMQbTcqBHAW_HlyUqrKw8Vv7Savk9uX0X1v-nj3MBpOe5oRnvW0KYTIGMkFZzzNS07LQVkULKc051pQnSpTgMG6LITBOTZGRCEqGWcUK8a6ydV-78o18Rgf5KJpXfzASzpI01RwnvNI9feUdo33Dkq5cnap3FYSLHchy13I8hByNOR7w8ZWsP2HlsPxZPbn_QYNeoKu</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Long</creator><creator>Zhang, Biao</creator><creator>Zhang, Teng</creator><creator>Li, Tao</creator><creator>Shi, Tengfei</creator><creator>Li, Wei</creator><creator>Shen, Tong</creator><creator>Huang, Xiaoxiao</creator><creator>Xu, Junjie</creator><creator>Zhang, Xiaoguang</creator><creator>Wang, Zhiyi</creator><creator>Hou, Yanglong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0579-4594</orcidid></search><sort><creationdate>20210601</creationdate><title>Eliminating Dendrites and Side Reactions via a Multifunctional ZnSe Protective Layer toward Advanced Aqueous Zn Metal Batteries</title><author>Zhang, Long ; Zhang, Biao ; Zhang, Teng ; Li, Tao ; Shi, Tengfei ; Li, Wei ; Shen, Tong ; Huang, Xiaoxiao ; Xu, Junjie ; Zhang, Xiaoguang ; Wang, Zhiyi ; Hou, Yanglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-cdb886319873749f72f5fbb392297c82c4adbed0cfb8d090dd8adbbed67320a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aqueous Zn metal batteries</topic><topic>Charge distribution</topic><topic>Commercialization</topic><topic>Corrosion prevention</topic><topic>dendrites</topic><topic>Dendritic structure</topic><topic>Hydrogen evolution</topic><topic>interfacial charge distributions</topic><topic>Manganese dioxide</topic><topic>Materials science</topic><topic>multifunctional protective layers</topic><topic>side reactions</topic><topic>Zinc</topic><topic>Zn affinities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Long</creatorcontrib><creatorcontrib>Zhang, Biao</creatorcontrib><creatorcontrib>Zhang, Teng</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Shi, Tengfei</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Shen, Tong</creatorcontrib><creatorcontrib>Huang, Xiaoxiao</creatorcontrib><creatorcontrib>Xu, Junjie</creatorcontrib><creatorcontrib>Zhang, Xiaoguang</creatorcontrib><creatorcontrib>Wang, Zhiyi</creatorcontrib><creatorcontrib>Hou, Yanglong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Long</au><au>Zhang, Biao</au><au>Zhang, Teng</au><au>Li, Tao</au><au>Shi, Tengfei</au><au>Li, Wei</au><au>Shen, Tong</au><au>Huang, Xiaoxiao</au><au>Xu, Junjie</au><au>Zhang, Xiaoguang</au><au>Wang, Zhiyi</au><au>Hou, Yanglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eliminating Dendrites and Side Reactions via a Multifunctional ZnSe Protective Layer toward Advanced Aqueous Zn Metal Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>26</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The development of aqueous Zn metal batteries (AZMBs) is impeded by severe corrosion, H2 evolution, and dendrite formation issues. In addition, the inability of AZMBs to achieve a large capacity also hinders their commercialization. Here, a multifunctional ZnSe protective layer is reported to synchronously solve the above issues. The ZnSe layer can efficiently provide anticorrosion while also suppressing hydrogen evolution. Systematic analyses of the mechanism suggest that the low Zn affinity of ZnSe and the unbalanced charge distribution at the interface can promote a uniform distribution of Zn2+ and accelerate Zn2+ migration, thus realizing dendrite‐free behavior. Therefore, the Zn@ZnSe symmetric cell exhibits notable rate performance and cycling stability (1500 h). Moreover, this symmetric cell can still stabilize with a low polarization (50 mV), even at 10 mA cm−2 with 5 mAh cm−2. The full cell paired with MnO2 achieves a long lifespan (1800 cycles) with a Coulombic efficiency near 100%. Therefore, this strategy for eliminating dendrites and side reactions at a high rate with a large capacity provides a promising solution for the development of AZMBs. A multifunctional ZnSe protective layer is fabricated to eliminate Zn dendrites and side reactions synchronously. The Zn@ZnSe symmetric cell exhibits prominent stability even at 10 mA cm‐2 with 5 mAh cm‐2. The full cell achieves a long lifespan with a Coulombic efficiency nearing 100%. The mechanism is deeply investigated via in situ experiments and systematic density functional theory calculations.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202100186</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0579-4594</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-06, Vol.31 (26), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2544487797
source Wiley Online Library All Journals
subjects aqueous Zn metal batteries
Charge distribution
Commercialization
Corrosion prevention
dendrites
Dendritic structure
Hydrogen evolution
interfacial charge distributions
Manganese dioxide
Materials science
multifunctional protective layers
side reactions
Zinc
Zn affinities
title Eliminating Dendrites and Side Reactions via a Multifunctional ZnSe Protective Layer toward Advanced Aqueous Zn Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eliminating%20Dendrites%20and%20Side%20Reactions%20via%20a%20Multifunctional%20ZnSe%20Protective%20Layer%20toward%20Advanced%20Aqueous%20Zn%20Metal%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhang,%20Long&rft.date=2021-06-01&rft.volume=31&rft.issue=26&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202100186&rft_dat=%3Cproquest_cross%3E2544487797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544487797&rft_id=info:pmid/&rfr_iscdi=true