Atomic Cobalt Vacancy‐Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting

Vacancies created on a surface can alter the local electronic structure, thus enabling a higher intrinsic activity for the evolution of hydrogen and oxygen. Conventional strategies for vacancy engineering, however, have a strong focus on non‐metal sulfur/oxygen defects, which have often overlooked m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-06, Vol.31 (26), p.n/a
Hauptverfasser: Zhou, Yu‐Qi, Zhang, Lifu, Suo, Hong‐Li, Hua, Weibo, Indris, Sylvio, Lei, Yaojie, Lai, Wei‐Hong, Wang, Yun‐Xiao, Hu, Zhenpeng, Liu, Hua‐Kun, Chou, Shu‐Lei, Dou, Shi‐Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page
container_title Advanced functional materials
container_volume 31
creator Zhou, Yu‐Qi
Zhang, Lifu
Suo, Hong‐Li
Hua, Weibo
Indris, Sylvio
Lei, Yaojie
Lai, Wei‐Hong
Wang, Yun‐Xiao
Hu, Zhenpeng
Liu, Hua‐Kun
Chou, Shu‐Lei
Dou, Shi‐Xue
description Vacancies created on a surface can alter the local electronic structure, thus enabling a higher intrinsic activity for the evolution of hydrogen and oxygen. Conventional strategies for vacancy engineering, however, have a strong focus on non‐metal sulfur/oxygen defects, which have often overlooked metallic vacancies. Herein, evidence is provided that cobalt vacancies can be atomically tuned to have different sizes to achieve cobalt vacancy clusters through controlling the migration of iridium single atoms. The coalescence of Co vacancy clusters at the surface of an IrCo alloy results in an increased d‐band level and eventually compromises H adsorption, leading to enhanced electrocatalytic activity toward the hydrogen evolution reaction. In addition, the Co vacancy clusters can improve the electronic conductivity with respect to the oxidized Co surface, which substantially aids in strengthening the adsorption of oxygen intermediates toward an effective oxygen evolution reaction at a low overpotential. These collective effects originate from the Co vacancy cluster and specifically enable highly efficient and stable water splitting with a low total overpotential of 384 mV in alkaline media and 365 mV in an acidic environment, achieving a current density of 10 mA cm–2. Cobalt vacancy‐cluster can address technological challenges of splitting water to simultaneously enable water oxidation and reduction reactions via optimized electronic structures, leading to efficient water electrolysis at low overpotential. In addition, evidence is provided that the cobalt vacancies can be atomically tuned to have different sizes to achieve cobalt vacancy clusters through controlling the migration of iridium single atoms.
doi_str_mv 10.1002/adfm.202101797
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544487688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544487688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3177-bd0fe0578c5149f3b8b7055435a90d77dcca87bbfa7c943454fecb201afcc3973</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqWwMkdiTrFjp07GKpSLVNSh3DbLPrGRq9xwHKEy8Qg8I0-Cq6IyMp0zfN9_jn6EzgmeEIyTS1maepLghGDCc36ARmRKpjHFSXa438nLMTrp-zUODKdshPTMt7WFqGiVrHz0JEE2sPn-_CqqoffaRfNGqso2r9Gy87a2H7qM5pUG79omaCvvBvCD05FpA2uMBasbHz3LrbvqKut9kE_RkZFVr89-5xg9Xs8fitt4sby5K2aLGGj4J1YlNhqnPIOUsNxQlSmO05TRVOa45LwEkBlXykgOOaMsZUaDSjCRBoDmnI7RxS63c-3boHsv1u3gmnBSJCljLOPTLAvUZEeBa_veaSM6Z2vpNoJgsa1SbKsU-yqDkO-Ed1vpzT-0mF1d3_-5P71fenA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544487688</pqid></control><display><type>article</type><title>Atomic Cobalt Vacancy‐Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting</title><source>Access via Wiley Online Library</source><creator>Zhou, Yu‐Qi ; Zhang, Lifu ; Suo, Hong‐Li ; Hua, Weibo ; Indris, Sylvio ; Lei, Yaojie ; Lai, Wei‐Hong ; Wang, Yun‐Xiao ; Hu, Zhenpeng ; Liu, Hua‐Kun ; Chou, Shu‐Lei ; Dou, Shi‐Xue</creator><creatorcontrib>Zhou, Yu‐Qi ; Zhang, Lifu ; Suo, Hong‐Li ; Hua, Weibo ; Indris, Sylvio ; Lei, Yaojie ; Lai, Wei‐Hong ; Wang, Yun‐Xiao ; Hu, Zhenpeng ; Liu, Hua‐Kun ; Chou, Shu‐Lei ; Dou, Shi‐Xue</creatorcontrib><description>Vacancies created on a surface can alter the local electronic structure, thus enabling a higher intrinsic activity for the evolution of hydrogen and oxygen. Conventional strategies for vacancy engineering, however, have a strong focus on non‐metal sulfur/oxygen defects, which have often overlooked metallic vacancies. Herein, evidence is provided that cobalt vacancies can be atomically tuned to have different sizes to achieve cobalt vacancy clusters through controlling the migration of iridium single atoms. The coalescence of Co vacancy clusters at the surface of an IrCo alloy results in an increased d‐band level and eventually compromises H adsorption, leading to enhanced electrocatalytic activity toward the hydrogen evolution reaction. In addition, the Co vacancy clusters can improve the electronic conductivity with respect to the oxidized Co surface, which substantially aids in strengthening the adsorption of oxygen intermediates toward an effective oxygen evolution reaction at a low overpotential. These collective effects originate from the Co vacancy cluster and specifically enable highly efficient and stable water splitting with a low total overpotential of 384 mV in alkaline media and 365 mV in an acidic environment, achieving a current density of 10 mA cm–2. Cobalt vacancy‐cluster can address technological challenges of splitting water to simultaneously enable water oxidation and reduction reactions via optimized electronic structures, leading to efficient water electrolysis at low overpotential. In addition, evidence is provided that the cobalt vacancies can be atomically tuned to have different sizes to achieve cobalt vacancy clusters through controlling the migration of iridium single atoms.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202101797</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Clusters ; Co vacancy clusters ; Coalescing ; Cobalt ; Electronic structure ; HER ; Hydrogen evolution reactions ; Iridium ; Materials science ; OER ; Oxygen evolution reactions ; Surface chemistry ; Vacancies ; vacancy engineering ; water electrolysis ; Water splitting</subject><ispartof>Advanced functional materials, 2021-06, Vol.31 (26), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3177-bd0fe0578c5149f3b8b7055435a90d77dcca87bbfa7c943454fecb201afcc3973</citedby><cites>FETCH-LOGICAL-c3177-bd0fe0578c5149f3b8b7055435a90d77dcca87bbfa7c943454fecb201afcc3973</cites><orcidid>0000-0002-8685-9662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202101797$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202101797$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhou, Yu‐Qi</creatorcontrib><creatorcontrib>Zhang, Lifu</creatorcontrib><creatorcontrib>Suo, Hong‐Li</creatorcontrib><creatorcontrib>Hua, Weibo</creatorcontrib><creatorcontrib>Indris, Sylvio</creatorcontrib><creatorcontrib>Lei, Yaojie</creatorcontrib><creatorcontrib>Lai, Wei‐Hong</creatorcontrib><creatorcontrib>Wang, Yun‐Xiao</creatorcontrib><creatorcontrib>Hu, Zhenpeng</creatorcontrib><creatorcontrib>Liu, Hua‐Kun</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Dou, Shi‐Xue</creatorcontrib><title>Atomic Cobalt Vacancy‐Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting</title><title>Advanced functional materials</title><description>Vacancies created on a surface can alter the local electronic structure, thus enabling a higher intrinsic activity for the evolution of hydrogen and oxygen. Conventional strategies for vacancy engineering, however, have a strong focus on non‐metal sulfur/oxygen defects, which have often overlooked metallic vacancies. Herein, evidence is provided that cobalt vacancies can be atomically tuned to have different sizes to achieve cobalt vacancy clusters through controlling the migration of iridium single atoms. The coalescence of Co vacancy clusters at the surface of an IrCo alloy results in an increased d‐band level and eventually compromises H adsorption, leading to enhanced electrocatalytic activity toward the hydrogen evolution reaction. In addition, the Co vacancy clusters can improve the electronic conductivity with respect to the oxidized Co surface, which substantially aids in strengthening the adsorption of oxygen intermediates toward an effective oxygen evolution reaction at a low overpotential. These collective effects originate from the Co vacancy cluster and specifically enable highly efficient and stable water splitting with a low total overpotential of 384 mV in alkaline media and 365 mV in an acidic environment, achieving a current density of 10 mA cm–2. Cobalt vacancy‐cluster can address technological challenges of splitting water to simultaneously enable water oxidation and reduction reactions via optimized electronic structures, leading to efficient water electrolysis at low overpotential. In addition, evidence is provided that the cobalt vacancies can be atomically tuned to have different sizes to achieve cobalt vacancy clusters through controlling the migration of iridium single atoms.</description><subject>Adsorption</subject><subject>Clusters</subject><subject>Co vacancy clusters</subject><subject>Coalescing</subject><subject>Cobalt</subject><subject>Electronic structure</subject><subject>HER</subject><subject>Hydrogen evolution reactions</subject><subject>Iridium</subject><subject>Materials science</subject><subject>OER</subject><subject>Oxygen evolution reactions</subject><subject>Surface chemistry</subject><subject>Vacancies</subject><subject>vacancy engineering</subject><subject>water electrolysis</subject><subject>Water splitting</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqWwMkdiTrFjp07GKpSLVNSh3DbLPrGRq9xwHKEy8Qg8I0-Cq6IyMp0zfN9_jn6EzgmeEIyTS1maepLghGDCc36ARmRKpjHFSXa438nLMTrp-zUODKdshPTMt7WFqGiVrHz0JEE2sPn-_CqqoffaRfNGqso2r9Gy87a2H7qM5pUG79omaCvvBvCD05FpA2uMBasbHz3LrbvqKut9kE_RkZFVr89-5xg9Xs8fitt4sby5K2aLGGj4J1YlNhqnPIOUsNxQlSmO05TRVOa45LwEkBlXykgOOaMsZUaDSjCRBoDmnI7RxS63c-3boHsv1u3gmnBSJCljLOPTLAvUZEeBa_veaSM6Z2vpNoJgsa1SbKsU-yqDkO-Ed1vpzT-0mF1d3_-5P71fenA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhou, Yu‐Qi</creator><creator>Zhang, Lifu</creator><creator>Suo, Hong‐Li</creator><creator>Hua, Weibo</creator><creator>Indris, Sylvio</creator><creator>Lei, Yaojie</creator><creator>Lai, Wei‐Hong</creator><creator>Wang, Yun‐Xiao</creator><creator>Hu, Zhenpeng</creator><creator>Liu, Hua‐Kun</creator><creator>Chou, Shu‐Lei</creator><creator>Dou, Shi‐Xue</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8685-9662</orcidid></search><sort><creationdate>20210601</creationdate><title>Atomic Cobalt Vacancy‐Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting</title><author>Zhou, Yu‐Qi ; Zhang, Lifu ; Suo, Hong‐Li ; Hua, Weibo ; Indris, Sylvio ; Lei, Yaojie ; Lai, Wei‐Hong ; Wang, Yun‐Xiao ; Hu, Zhenpeng ; Liu, Hua‐Kun ; Chou, Shu‐Lei ; Dou, Shi‐Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3177-bd0fe0578c5149f3b8b7055435a90d77dcca87bbfa7c943454fecb201afcc3973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Clusters</topic><topic>Co vacancy clusters</topic><topic>Coalescing</topic><topic>Cobalt</topic><topic>Electronic structure</topic><topic>HER</topic><topic>Hydrogen evolution reactions</topic><topic>Iridium</topic><topic>Materials science</topic><topic>OER</topic><topic>Oxygen evolution reactions</topic><topic>Surface chemistry</topic><topic>Vacancies</topic><topic>vacancy engineering</topic><topic>water electrolysis</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yu‐Qi</creatorcontrib><creatorcontrib>Zhang, Lifu</creatorcontrib><creatorcontrib>Suo, Hong‐Li</creatorcontrib><creatorcontrib>Hua, Weibo</creatorcontrib><creatorcontrib>Indris, Sylvio</creatorcontrib><creatorcontrib>Lei, Yaojie</creatorcontrib><creatorcontrib>Lai, Wei‐Hong</creatorcontrib><creatorcontrib>Wang, Yun‐Xiao</creatorcontrib><creatorcontrib>Hu, Zhenpeng</creatorcontrib><creatorcontrib>Liu, Hua‐Kun</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Dou, Shi‐Xue</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yu‐Qi</au><au>Zhang, Lifu</au><au>Suo, Hong‐Li</au><au>Hua, Weibo</au><au>Indris, Sylvio</au><au>Lei, Yaojie</au><au>Lai, Wei‐Hong</au><au>Wang, Yun‐Xiao</au><au>Hu, Zhenpeng</au><au>Liu, Hua‐Kun</au><au>Chou, Shu‐Lei</au><au>Dou, Shi‐Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Cobalt Vacancy‐Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting</atitle><jtitle>Advanced functional materials</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>31</volume><issue>26</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Vacancies created on a surface can alter the local electronic structure, thus enabling a higher intrinsic activity for the evolution of hydrogen and oxygen. Conventional strategies for vacancy engineering, however, have a strong focus on non‐metal sulfur/oxygen defects, which have often overlooked metallic vacancies. Herein, evidence is provided that cobalt vacancies can be atomically tuned to have different sizes to achieve cobalt vacancy clusters through controlling the migration of iridium single atoms. The coalescence of Co vacancy clusters at the surface of an IrCo alloy results in an increased d‐band level and eventually compromises H adsorption, leading to enhanced electrocatalytic activity toward the hydrogen evolution reaction. In addition, the Co vacancy clusters can improve the electronic conductivity with respect to the oxidized Co surface, which substantially aids in strengthening the adsorption of oxygen intermediates toward an effective oxygen evolution reaction at a low overpotential. These collective effects originate from the Co vacancy cluster and specifically enable highly efficient and stable water splitting with a low total overpotential of 384 mV in alkaline media and 365 mV in an acidic environment, achieving a current density of 10 mA cm–2. Cobalt vacancy‐cluster can address technological challenges of splitting water to simultaneously enable water oxidation and reduction reactions via optimized electronic structures, leading to efficient water electrolysis at low overpotential. In addition, evidence is provided that the cobalt vacancies can be atomically tuned to have different sizes to achieve cobalt vacancy clusters through controlling the migration of iridium single atoms.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202101797</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8685-9662</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-06, Vol.31 (26), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2544487688
source Access via Wiley Online Library
subjects Adsorption
Clusters
Co vacancy clusters
Coalescing
Cobalt
Electronic structure
HER
Hydrogen evolution reactions
Iridium
Materials science
OER
Oxygen evolution reactions
Surface chemistry
Vacancies
vacancy engineering
water electrolysis
Water splitting
title Atomic Cobalt Vacancy‐Cluster Enabling Optimized Electronic Structure for Efficient Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A03%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Cobalt%20Vacancy%E2%80%90Cluster%20Enabling%20Optimized%20Electronic%20Structure%20for%20Efficient%20Water%20Splitting&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhou,%20Yu%E2%80%90Qi&rft.date=2021-06-01&rft.volume=31&rft.issue=26&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202101797&rft_dat=%3Cproquest_cross%3E2544487688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544487688&rft_id=info:pmid/&rfr_iscdi=true