Internet of moving target detection method based on nonparametric background model

In traffic surveillance system, mobile target detection and identification is the key technology in traffic surveillance system. In this paper, one detection method based on non-parametric background model is adopted on the basis of the summary of previous background modeling. In the model, a series...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computers & applications 2021-02, Vol.43 (2), p.193-198
Hauptverfasser: Hongli, Li, Yaofeng, Ma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 2
container_start_page 193
container_title International journal of computers & applications
container_volume 43
creator Hongli, Li
Yaofeng, Ma
description In traffic surveillance system, mobile target detection and identification is the key technology in traffic surveillance system. In this paper, one detection method based on non-parametric background model is adopted on the basis of the summary of previous background modeling. In the model, a series of sampling values are used to estimate and observe probability model of pixel points; and then, the probability model is used for binarization detection of mobile targets. In the end, we have brought favorable detection effects by noise suppression treatment. As for identification of mobile targets, several features are proposed in this paper and neural network is used for identification training. Experiment results show that classification of pedestrian and vehicle targets according to these features has a high rate of identification.
doi_str_mv 10.1080/1206212X.2018.1537096
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2544356004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544356004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c201t-a98402b72783aadc8a05ba7ac1f20dfb70bc4e33f1ab9a997bcac04defd08cda3</originalsourceid><addsrcrecordid>eNp9UNtKAzEQDaJgrX6CsODz1kn2kt03pXgpFARR8C3M5lK37iY1SZX-vSnVV59m5nDOmZlDyCWFGYUGrimDmlH2NmNAmxmtCg5tfUQmtGVVzoGXx6lPnHxPOiVnIawBSs7qZkKeFzZqb3XMnMlG99XbVRbRrxKgdNQy9s5mo47vTmUdBq2yNFtnN-gxwb6XCZYfK--2ViUDpYdzcmJwCPrit07J6_3dy_wxXz49LOa3y1ymO2OObVMC6zjjTYGoZINQdchRUsNAmY5DJ0tdFIZi12Lb8k6ihFJpo6CRCospuTr4brz73OoQxdptvU0rBavKsqjq9GViVQeW9C4Er43Y-H5EvxMUxD4-8Ref2McnfuNLupuDrrfG-RG_nR-UiLgbnDcereyDKP63-AEQCHj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544356004</pqid></control><display><type>article</type><title>Internet of moving target detection method based on nonparametric background model</title><source>Taylor &amp; Francis Online</source><creator>Hongli, Li ; Yaofeng, Ma</creator><creatorcontrib>Hongli, Li ; Yaofeng, Ma</creatorcontrib><description>In traffic surveillance system, mobile target detection and identification is the key technology in traffic surveillance system. In this paper, one detection method based on non-parametric background model is adopted on the basis of the summary of previous background modeling. In the model, a series of sampling values are used to estimate and observe probability model of pixel points; and then, the probability model is used for binarization detection of mobile targets. In the end, we have brought favorable detection effects by noise suppression treatment. As for identification of mobile targets, several features are proposed in this paper and neural network is used for identification training. Experiment results show that classification of pedestrian and vehicle targets according to these features has a high rate of identification.</description><identifier>ISSN: 1206-212X</identifier><identifier>EISSN: 1925-7074</identifier><identifier>DOI: 10.1080/1206212X.2018.1537096</identifier><language>eng</language><publisher>Calgary: Taylor &amp; Francis</publisher><subject>background model ; Moving targets ; Neural networks ; Noise reduction ; Nonparametric statistics ; Proposal of features ; Surveillance ; Target detection ; target identification ; Target recognition ; Traffic models ; Traffic surveillance ; video surveillance</subject><ispartof>International journal of computers &amp; applications, 2021-02, Vol.43 (2), p.193-198</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c201t-a98402b72783aadc8a05ba7ac1f20dfb70bc4e33f1ab9a997bcac04defd08cda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/1206212X.2018.1537096$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/1206212X.2018.1537096$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Hongli, Li</creatorcontrib><creatorcontrib>Yaofeng, Ma</creatorcontrib><title>Internet of moving target detection method based on nonparametric background model</title><title>International journal of computers &amp; applications</title><description>In traffic surveillance system, mobile target detection and identification is the key technology in traffic surveillance system. In this paper, one detection method based on non-parametric background model is adopted on the basis of the summary of previous background modeling. In the model, a series of sampling values are used to estimate and observe probability model of pixel points; and then, the probability model is used for binarization detection of mobile targets. In the end, we have brought favorable detection effects by noise suppression treatment. As for identification of mobile targets, several features are proposed in this paper and neural network is used for identification training. Experiment results show that classification of pedestrian and vehicle targets according to these features has a high rate of identification.</description><subject>background model</subject><subject>Moving targets</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Nonparametric statistics</subject><subject>Proposal of features</subject><subject>Surveillance</subject><subject>Target detection</subject><subject>target identification</subject><subject>Target recognition</subject><subject>Traffic models</subject><subject>Traffic surveillance</subject><subject>video surveillance</subject><issn>1206-212X</issn><issn>1925-7074</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKAzEQDaJgrX6CsODz1kn2kt03pXgpFARR8C3M5lK37iY1SZX-vSnVV59m5nDOmZlDyCWFGYUGrimDmlH2NmNAmxmtCg5tfUQmtGVVzoGXx6lPnHxPOiVnIawBSs7qZkKeFzZqb3XMnMlG99XbVRbRrxKgdNQy9s5mo47vTmUdBq2yNFtnN-gxwb6XCZYfK--2ViUDpYdzcmJwCPrit07J6_3dy_wxXz49LOa3y1ymO2OObVMC6zjjTYGoZINQdchRUsNAmY5DJ0tdFIZi12Lb8k6ihFJpo6CRCospuTr4brz73OoQxdptvU0rBavKsqjq9GViVQeW9C4Er43Y-H5EvxMUxD4-8Ref2McnfuNLupuDrrfG-RG_nR-UiLgbnDcereyDKP63-AEQCHj0</recordid><startdate>20210207</startdate><enddate>20210207</enddate><creator>Hongli, Li</creator><creator>Yaofeng, Ma</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210207</creationdate><title>Internet of moving target detection method based on nonparametric background model</title><author>Hongli, Li ; Yaofeng, Ma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c201t-a98402b72783aadc8a05ba7ac1f20dfb70bc4e33f1ab9a997bcac04defd08cda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>background model</topic><topic>Moving targets</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Nonparametric statistics</topic><topic>Proposal of features</topic><topic>Surveillance</topic><topic>Target detection</topic><topic>target identification</topic><topic>Target recognition</topic><topic>Traffic models</topic><topic>Traffic surveillance</topic><topic>video surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hongli, Li</creatorcontrib><creatorcontrib>Yaofeng, Ma</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computers &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hongli, Li</au><au>Yaofeng, Ma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internet of moving target detection method based on nonparametric background model</atitle><jtitle>International journal of computers &amp; applications</jtitle><date>2021-02-07</date><risdate>2021</risdate><volume>43</volume><issue>2</issue><spage>193</spage><epage>198</epage><pages>193-198</pages><issn>1206-212X</issn><eissn>1925-7074</eissn><abstract>In traffic surveillance system, mobile target detection and identification is the key technology in traffic surveillance system. In this paper, one detection method based on non-parametric background model is adopted on the basis of the summary of previous background modeling. In the model, a series of sampling values are used to estimate and observe probability model of pixel points; and then, the probability model is used for binarization detection of mobile targets. In the end, we have brought favorable detection effects by noise suppression treatment. As for identification of mobile targets, several features are proposed in this paper and neural network is used for identification training. Experiment results show that classification of pedestrian and vehicle targets according to these features has a high rate of identification.</abstract><cop>Calgary</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/1206212X.2018.1537096</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1206-212X
ispartof International journal of computers & applications, 2021-02, Vol.43 (2), p.193-198
issn 1206-212X
1925-7074
language eng
recordid cdi_proquest_journals_2544356004
source Taylor & Francis Online
subjects background model
Moving targets
Neural networks
Noise reduction
Nonparametric statistics
Proposal of features
Surveillance
Target detection
target identification
Target recognition
Traffic models
Traffic surveillance
video surveillance
title Internet of moving target detection method based on nonparametric background model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internet%20of%20moving%20target%20detection%20method%20based%20on%20nonparametric%20background%20model&rft.jtitle=International%20journal%20of%20computers%20&%20applications&rft.au=Hongli,%20Li&rft.date=2021-02-07&rft.volume=43&rft.issue=2&rft.spage=193&rft.epage=198&rft.pages=193-198&rft.issn=1206-212X&rft.eissn=1925-7074&rft_id=info:doi/10.1080/1206212X.2018.1537096&rft_dat=%3Cproquest_infor%3E2544356004%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544356004&rft_id=info:pmid/&rfr_iscdi=true