Forecasting at Scale

Forecasting is a common data science task that helps organizations with capacity planning, goal setting, and anomaly detection. Despite its importance, there are serious challenges associated with producing reliable and high-quality forecasts—especially when there are a variety of time series and an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American statistician 2018-02, Vol.72 (1), p.37-45
Hauptverfasser: Taylor, Sean J., Letham, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 1
container_start_page 37
container_title The American statistician
container_volume 72
creator Taylor, Sean J.
Letham, Benjamin
description Forecasting is a common data science task that helps organizations with capacity planning, goal setting, and anomaly detection. Despite its importance, there are serious challenges associated with producing reliable and high-quality forecasts—especially when there are a variety of time series and analysts with expertise in time series modeling are relatively rare. To address these challenges, we describe a practical approach to forecasting "at scale" that combines configurable models with analyst-in-the-loop performance analysis. We propose a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series. We describe performance analyses to compare and evaluate forecasting procedures, and automatically flag forecasts for manual review and adjustment. Tools that help analysts to use their expertise most effectively enable reliable, practical forecasting of business time series.
doi_str_mv 10.1080/00031305.2017.1380080
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2544341036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45118526</jstor_id><sourcerecordid>45118526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-987acbc5b6f5d9001b66218cd32683ce95861f01730195e63904213de960018a3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMRiMEEmVw4zppEucWO27S5IgmBkiTOGycozRN0aqxjqQ78O9J1cHJsvU-23qMzREKBAWPAEBIIAoOWBVICtL0gmUoqMp5RXjJspHJR-ia3cTYpRYqyTN2v-qDdzYOu8Pnwg6LjbN7f8uuWruP_u5cZ-xj9bxdvubr95e35dM6dwQ05FpV1tVO1LIVjQbAWkqOyjXEpSLntVAS2_QTAWrhJWkoOVLjtUywsjRjD9PeY-i_Tz4OputP4ZBOGi7KkkoEkokSE-VCH2PwrTmG3ZcNPwbBjALMnwAzCjBnASk3n3JdHPrwHyoFohJc0i9rkFLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544341036</pqid></control><display><type>article</type><title>Forecasting at Scale</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Taylor, Sean J. ; Letham, Benjamin</creator><creatorcontrib>Taylor, Sean J. ; Letham, Benjamin</creatorcontrib><description>Forecasting is a common data science task that helps organizations with capacity planning, goal setting, and anomaly detection. Despite its importance, there are serious challenges associated with producing reliable and high-quality forecasts—especially when there are a variety of time series and analysts with expertise in time series modeling are relatively rare. To address these challenges, we describe a practical approach to forecasting "at scale" that combines configurable models with analyst-in-the-loop performance analysis. We propose a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series. We describe performance analyses to compare and evaluate forecasting procedures, and automatically flag forecasts for manual review and adjustment. Tools that help analysts to use their expertise most effectively enable reliable, practical forecasting of business time series.</description><identifier>ISSN: 0003-1305</identifier><identifier>EISSN: 1537-2731</identifier><identifier>DOI: 10.1080/00031305.2017.1380080</identifier><language>eng</language><publisher>Alexandria: American Statistical Association</publisher><subject>Anomalies ; Forecasting ; Regression analysis ; Regression models ; Statistical methods ; Statistics ; Time series</subject><ispartof>The American statistician, 2018-02, Vol.72 (1), p.37-45</ispartof><rights>Copyright 2018 American Statistical Association</rights><rights>2018 American Statistical Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-987acbc5b6f5d9001b66218cd32683ce95861f01730195e63904213de960018a3</citedby><cites>FETCH-LOGICAL-c303t-987acbc5b6f5d9001b66218cd32683ce95861f01730195e63904213de960018a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45118526$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45118526$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Taylor, Sean J.</creatorcontrib><creatorcontrib>Letham, Benjamin</creatorcontrib><title>Forecasting at Scale</title><title>The American statistician</title><description>Forecasting is a common data science task that helps organizations with capacity planning, goal setting, and anomaly detection. Despite its importance, there are serious challenges associated with producing reliable and high-quality forecasts—especially when there are a variety of time series and analysts with expertise in time series modeling are relatively rare. To address these challenges, we describe a practical approach to forecasting "at scale" that combines configurable models with analyst-in-the-loop performance analysis. We propose a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series. We describe performance analyses to compare and evaluate forecasting procedures, and automatically flag forecasts for manual review and adjustment. Tools that help analysts to use their expertise most effectively enable reliable, practical forecasting of business time series.</description><subject>Anomalies</subject><subject>Forecasting</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Time series</subject><issn>0003-1305</issn><issn>1537-2731</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEFPwzAMRiMEEmVw4zppEucWO27S5IgmBkiTOGycozRN0aqxjqQ78O9J1cHJsvU-23qMzREKBAWPAEBIIAoOWBVICtL0gmUoqMp5RXjJspHJR-ia3cTYpRYqyTN2v-qDdzYOu8Pnwg6LjbN7f8uuWruP_u5cZ-xj9bxdvubr95e35dM6dwQ05FpV1tVO1LIVjQbAWkqOyjXEpSLntVAS2_QTAWrhJWkoOVLjtUywsjRjD9PeY-i_Tz4OputP4ZBOGi7KkkoEkokSE-VCH2PwrTmG3ZcNPwbBjALMnwAzCjBnASk3n3JdHPrwHyoFohJc0i9rkFLA</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Taylor, Sean J.</creator><creator>Letham, Benjamin</creator><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Forecasting at Scale</title><author>Taylor, Sean J. ; Letham, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-987acbc5b6f5d9001b66218cd32683ce95861f01730195e63904213de960018a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anomalies</topic><topic>Forecasting</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Sean J.</creatorcontrib><creatorcontrib>Letham, Benjamin</creatorcontrib><collection>CrossRef</collection><jtitle>The American statistician</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Sean J.</au><au>Letham, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting at Scale</atitle><jtitle>The American statistician</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>72</volume><issue>1</issue><spage>37</spage><epage>45</epage><pages>37-45</pages><issn>0003-1305</issn><eissn>1537-2731</eissn><abstract>Forecasting is a common data science task that helps organizations with capacity planning, goal setting, and anomaly detection. Despite its importance, there are serious challenges associated with producing reliable and high-quality forecasts—especially when there are a variety of time series and analysts with expertise in time series modeling are relatively rare. To address these challenges, we describe a practical approach to forecasting "at scale" that combines configurable models with analyst-in-the-loop performance analysis. We propose a modular regression model with interpretable parameters that can be intuitively adjusted by analysts with domain knowledge about the time series. We describe performance analyses to compare and evaluate forecasting procedures, and automatically flag forecasts for manual review and adjustment. Tools that help analysts to use their expertise most effectively enable reliable, practical forecasting of business time series.</abstract><cop>Alexandria</cop><pub>American Statistical Association</pub><doi>10.1080/00031305.2017.1380080</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-1305
ispartof The American statistician, 2018-02, Vol.72 (1), p.37-45
issn 0003-1305
1537-2731
language eng
recordid cdi_proquest_journals_2544341036
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Anomalies
Forecasting
Regression analysis
Regression models
Statistical methods
Statistics
Time series
title Forecasting at Scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20at%20Scale&rft.jtitle=The%20American%20statistician&rft.au=Taylor,%20Sean%20J.&rft.date=2018-02-01&rft.volume=72&rft.issue=1&rft.spage=37&rft.epage=45&rft.pages=37-45&rft.issn=0003-1305&rft.eissn=1537-2731&rft_id=info:doi/10.1080/00031305.2017.1380080&rft_dat=%3Cjstor_proqu%3E45118526%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544341036&rft_id=info:pmid/&rft_jstor_id=45118526&rfr_iscdi=true