Improvement of β-Ga2O3 MIS-SBD Interface Using Al-Reacted Interfacial Layer

In this article, a \beta -Ga 2 O 3 metal-interlayer-semiconductor Schottky barrier diode (MIS-SBD) using Al-reacted aluminum oxide as the interlayer is demonstrated for the first time and compared with conventional metal-semiconductor (MS) Schottky barrier diode (SBD). The aluminum oxide is formed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2021-07, Vol.68 (7), p.3314-3319
Hauptverfasser: He, Minghao, Cheng, Wei-Chih, Zeng, Fanming, Qiao, Zepeng, Chien, Yu-Chieh, Jiang, Yang, Li, Wenmao, Jiang, Lingli, Wang, Qing, Ang, Kah-Wee, Yu, Hongyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3319
container_issue 7
container_start_page 3314
container_title IEEE transactions on electron devices
container_volume 68
creator He, Minghao
Cheng, Wei-Chih
Zeng, Fanming
Qiao, Zepeng
Chien, Yu-Chieh
Jiang, Yang
Li, Wenmao
Jiang, Lingli
Wang, Qing
Ang, Kah-Wee
Yu, Hongyu
description In this article, a \beta -Ga 2 O 3 metal-interlayer-semiconductor Schottky barrier diode (MIS-SBD) using Al-reacted aluminum oxide as the interlayer is demonstrated for the first time and compared with conventional metal-semiconductor (MS) Schottky barrier diode (SBD). The aluminum oxide is formed by sputtering a thin Al layer on Ga 2 O 3 substrate and then annealed in O 2 at 300 °C. With the insertion of Al-reacted interlayer, the SBD subthreshold swing (SS) is significantly improved to 61 mV/dec with an average current range of >6 orders. Example of atomic layer deposited (ALD) Al 2 O 3 as the interlayer is also fabricated and characterized. {J} - {V} study corrected by Gaussian distribution model shows that all the samples statistically exhibit similar mean barrier heights (BHs). This indicates that the interlayer hardly affects the electrostatic field and band bending as experienced by carrier injections. {C} - {V} study provides different BH results in different sample setups. The result proves that Al-reacted interfacial layer helps eliminate interface degradation as compared with ALD Al 2 O 3 . Overall, MIS-SBD by Al-reaction method exhibits improved SS, reduced reverse leakage current ( {I}_{0} ), low ideality factor, good ON-OFF ratio ( > 10^{9} ), and minimized interface charges as compared with its respective counterparts. The result of this article serves as a promising interface engineering technique for Ga 2 O 3 -based SBD designs.
doi_str_mv 10.1109/TED.2021.3081075
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2544296639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444549</ieee_id><sourcerecordid>2544296639</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-a0885cc0e8f03f3c15a61e878cb2fc4568f78480c46c329b0ce2a89bb484a29b3</originalsourceid><addsrcrecordid>eNo9T81Kw0AYXETBWr0LXhY8b9z_fHusba2BSMG257BZv5WUNq1JWuhr-SA-k4GKp2GYYX4IuRc8EYK7p-V0kkguRaI4CJ6aCzIQxqTMWW0vyYBzAcwpUNfkpm3XPbVaywHJs-2-2R1xi3VHd5H-fLOZl3NF37IFWzxPaFZ32EQfkK7aqv6kow17Rx86_PiXKr-huT9hc0uuot-0ePeHQ7J6mS7Hryyfz7LxKGeVUKpjngOYEDhC5CqqIIy3AiGFUMoYtLEQU9DAg7ZBSVfygNKDK0sN2vdcDcnjObef_nXAtivWu0NT95WFNP0tZ61yvevh7KoQsdg31dY3p8JprY126hfpFlb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544296639</pqid></control><display><type>article</type><title>Improvement of β-Ga2O3 MIS-SBD Interface Using Al-Reacted Interfacial Layer</title><source>IEEE Electronic Library (IEL)</source><creator>He, Minghao ; Cheng, Wei-Chih ; Zeng, Fanming ; Qiao, Zepeng ; Chien, Yu-Chieh ; Jiang, Yang ; Li, Wenmao ; Jiang, Lingli ; Wang, Qing ; Ang, Kah-Wee ; Yu, Hongyu</creator><creatorcontrib>He, Minghao ; Cheng, Wei-Chih ; Zeng, Fanming ; Qiao, Zepeng ; Chien, Yu-Chieh ; Jiang, Yang ; Li, Wenmao ; Jiang, Lingli ; Wang, Qing ; Ang, Kah-Wee ; Yu, Hongyu</creatorcontrib><description><![CDATA[In this article, a <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 metal-interlayer-semiconductor Schottky barrier diode (MIS-SBD) using Al-reacted aluminum oxide as the interlayer is demonstrated for the first time and compared with conventional metal-semiconductor (MS) Schottky barrier diode (SBD). The aluminum oxide is formed by sputtering a thin Al layer on Ga 2 O 3 substrate and then annealed in O 2 at 300 °C. With the insertion of Al-reacted interlayer, the SBD subthreshold swing (SS) is significantly improved to 61 mV/dec with an average current range of >6 orders. Example of atomic layer deposited (ALD) Al 2 O 3 as the interlayer is also fabricated and characterized. <inline-formula> <tex-math notation="LaTeX">{J} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> study corrected by Gaussian distribution model shows that all the samples statistically exhibit similar mean barrier heights (BHs). This indicates that the interlayer hardly affects the electrostatic field and band bending as experienced by carrier injections. <inline-formula> <tex-math notation="LaTeX">{C} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> study provides different BH results in different sample setups. The result proves that Al-reacted interfacial layer helps eliminate interface degradation as compared with ALD Al 2 O 3 . Overall, MIS-SBD by Al-reaction method exhibits improved SS, reduced reverse leakage current (<inline-formula> <tex-math notation="LaTeX">{I}_{0} </tex-math></inline-formula>), low ideality factor, good ON-OFF ratio (<inline-formula> <tex-math notation="LaTeX">> 10^{9} </tex-math></inline-formula>), and minimized interface charges as compared with its respective counterparts. The result of this article serves as a promising interface engineering technique for Ga 2 O 3 -based SBD designs.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2021.3081075</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C –&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;V ; &lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;J –&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;V ; Aluminum oxide ; Annealing ; Anodes ; Atomic layer epitaxy ; diode ; Electric fields ; gallium oxide ; Gallium oxides ; inhomogeneity ; Interlayers ; Leakage current ; metal-interlayer-semiconductor ; Metals ; Normal distribution ; Photonic band gap ; Schottky barriers ; Schottky contact ; Schottky diodes ; Statistical analysis ; Statistical methods ; Substrates</subject><ispartof>IEEE transactions on electron devices, 2021-07, Vol.68 (7), p.3314-3319</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4818-6057 ; 0000-0001-5249-6480 ; 0000-0002-5756-868X ; 0000-0002-5478-5662 ; 0000-0002-8491-6483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444549$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444549$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Minghao</creatorcontrib><creatorcontrib>Cheng, Wei-Chih</creatorcontrib><creatorcontrib>Zeng, Fanming</creatorcontrib><creatorcontrib>Qiao, Zepeng</creatorcontrib><creatorcontrib>Chien, Yu-Chieh</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Li, Wenmao</creatorcontrib><creatorcontrib>Jiang, Lingli</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Ang, Kah-Wee</creatorcontrib><creatorcontrib>Yu, Hongyu</creatorcontrib><title>Improvement of β-Ga2O3 MIS-SBD Interface Using Al-Reacted Interfacial Layer</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In this article, a <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 metal-interlayer-semiconductor Schottky barrier diode (MIS-SBD) using Al-reacted aluminum oxide as the interlayer is demonstrated for the first time and compared with conventional metal-semiconductor (MS) Schottky barrier diode (SBD). The aluminum oxide is formed by sputtering a thin Al layer on Ga 2 O 3 substrate and then annealed in O 2 at 300 °C. With the insertion of Al-reacted interlayer, the SBD subthreshold swing (SS) is significantly improved to 61 mV/dec with an average current range of >6 orders. Example of atomic layer deposited (ALD) Al 2 O 3 as the interlayer is also fabricated and characterized. <inline-formula> <tex-math notation="LaTeX">{J} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> study corrected by Gaussian distribution model shows that all the samples statistically exhibit similar mean barrier heights (BHs). This indicates that the interlayer hardly affects the electrostatic field and band bending as experienced by carrier injections. <inline-formula> <tex-math notation="LaTeX">{C} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> study provides different BH results in different sample setups. The result proves that Al-reacted interfacial layer helps eliminate interface degradation as compared with ALD Al 2 O 3 . Overall, MIS-SBD by Al-reaction method exhibits improved SS, reduced reverse leakage current (<inline-formula> <tex-math notation="LaTeX">{I}_{0} </tex-math></inline-formula>), low ideality factor, good ON-OFF ratio (<inline-formula> <tex-math notation="LaTeX">> 10^{9} </tex-math></inline-formula>), and minimized interface charges as compared with its respective counterparts. The result of this article serves as a promising interface engineering technique for Ga 2 O 3 -based SBD designs.]]></description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C –&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;V</subject><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;J –&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;V</subject><subject>Aluminum oxide</subject><subject>Annealing</subject><subject>Anodes</subject><subject>Atomic layer epitaxy</subject><subject>diode</subject><subject>Electric fields</subject><subject>gallium oxide</subject><subject>Gallium oxides</subject><subject>inhomogeneity</subject><subject>Interlayers</subject><subject>Leakage current</subject><subject>metal-interlayer-semiconductor</subject><subject>Metals</subject><subject>Normal distribution</subject><subject>Photonic band gap</subject><subject>Schottky barriers</subject><subject>Schottky contact</subject><subject>Schottky diodes</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Substrates</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9T81Kw0AYXETBWr0LXhY8b9z_fHusba2BSMG257BZv5WUNq1JWuhr-SA-k4GKp2GYYX4IuRc8EYK7p-V0kkguRaI4CJ6aCzIQxqTMWW0vyYBzAcwpUNfkpm3XPbVaywHJs-2-2R1xi3VHd5H-fLOZl3NF37IFWzxPaFZ32EQfkK7aqv6kow17Rx86_PiXKr-huT9hc0uuot-0ePeHQ7J6mS7Hryyfz7LxKGeVUKpjngOYEDhC5CqqIIy3AiGFUMoYtLEQU9DAg7ZBSVfygNKDK0sN2vdcDcnjObef_nXAtivWu0NT95WFNP0tZ61yvevh7KoQsdg31dY3p8JprY126hfpFlb8</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>He, Minghao</creator><creator>Cheng, Wei-Chih</creator><creator>Zeng, Fanming</creator><creator>Qiao, Zepeng</creator><creator>Chien, Yu-Chieh</creator><creator>Jiang, Yang</creator><creator>Li, Wenmao</creator><creator>Jiang, Lingli</creator><creator>Wang, Qing</creator><creator>Ang, Kah-Wee</creator><creator>Yu, Hongyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4818-6057</orcidid><orcidid>https://orcid.org/0000-0001-5249-6480</orcidid><orcidid>https://orcid.org/0000-0002-5756-868X</orcidid><orcidid>https://orcid.org/0000-0002-5478-5662</orcidid><orcidid>https://orcid.org/0000-0002-8491-6483</orcidid></search><sort><creationdate>20210701</creationdate><title>Improvement of β-Ga2O3 MIS-SBD Interface Using Al-Reacted Interfacial Layer</title><author>He, Minghao ; Cheng, Wei-Chih ; Zeng, Fanming ; Qiao, Zepeng ; Chien, Yu-Chieh ; Jiang, Yang ; Li, Wenmao ; Jiang, Lingli ; Wang, Qing ; Ang, Kah-Wee ; Yu, Hongyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-a0885cc0e8f03f3c15a61e878cb2fc4568f78480c46c329b0ce2a89bb484a29b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;C –&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;V</topic><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;J –&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;V</topic><topic>Aluminum oxide</topic><topic>Annealing</topic><topic>Anodes</topic><topic>Atomic layer epitaxy</topic><topic>diode</topic><topic>Electric fields</topic><topic>gallium oxide</topic><topic>Gallium oxides</topic><topic>inhomogeneity</topic><topic>Interlayers</topic><topic>Leakage current</topic><topic>metal-interlayer-semiconductor</topic><topic>Metals</topic><topic>Normal distribution</topic><topic>Photonic band gap</topic><topic>Schottky barriers</topic><topic>Schottky contact</topic><topic>Schottky diodes</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Minghao</creatorcontrib><creatorcontrib>Cheng, Wei-Chih</creatorcontrib><creatorcontrib>Zeng, Fanming</creatorcontrib><creatorcontrib>Qiao, Zepeng</creatorcontrib><creatorcontrib>Chien, Yu-Chieh</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Li, Wenmao</creatorcontrib><creatorcontrib>Jiang, Lingli</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Ang, Kah-Wee</creatorcontrib><creatorcontrib>Yu, Hongyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Minghao</au><au>Cheng, Wei-Chih</au><au>Zeng, Fanming</au><au>Qiao, Zepeng</au><au>Chien, Yu-Chieh</au><au>Jiang, Yang</au><au>Li, Wenmao</au><au>Jiang, Lingli</au><au>Wang, Qing</au><au>Ang, Kah-Wee</au><au>Yu, Hongyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of β-Ga2O3 MIS-SBD Interface Using Al-Reacted Interfacial Layer</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>68</volume><issue>7</issue><spage>3314</spage><epage>3319</epage><pages>3314-3319</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In this article, a <inline-formula> <tex-math notation="LaTeX">\beta </tex-math></inline-formula>-Ga 2 O 3 metal-interlayer-semiconductor Schottky barrier diode (MIS-SBD) using Al-reacted aluminum oxide as the interlayer is demonstrated for the first time and compared with conventional metal-semiconductor (MS) Schottky barrier diode (SBD). The aluminum oxide is formed by sputtering a thin Al layer on Ga 2 O 3 substrate and then annealed in O 2 at 300 °C. With the insertion of Al-reacted interlayer, the SBD subthreshold swing (SS) is significantly improved to 61 mV/dec with an average current range of >6 orders. Example of atomic layer deposited (ALD) Al 2 O 3 as the interlayer is also fabricated and characterized. <inline-formula> <tex-math notation="LaTeX">{J} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> study corrected by Gaussian distribution model shows that all the samples statistically exhibit similar mean barrier heights (BHs). This indicates that the interlayer hardly affects the electrostatic field and band bending as experienced by carrier injections. <inline-formula> <tex-math notation="LaTeX">{C} </tex-math></inline-formula>-<inline-formula> <tex-math notation="LaTeX">{V} </tex-math></inline-formula> study provides different BH results in different sample setups. The result proves that Al-reacted interfacial layer helps eliminate interface degradation as compared with ALD Al 2 O 3 . Overall, MIS-SBD by Al-reaction method exhibits improved SS, reduced reverse leakage current (<inline-formula> <tex-math notation="LaTeX">{I}_{0} </tex-math></inline-formula>), low ideality factor, good ON-OFF ratio (<inline-formula> <tex-math notation="LaTeX">> 10^{9} </tex-math></inline-formula>), and minimized interface charges as compared with its respective counterparts. The result of this article serves as a promising interface engineering technique for Ga 2 O 3 -based SBD designs.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2021.3081075</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4818-6057</orcidid><orcidid>https://orcid.org/0000-0001-5249-6480</orcidid><orcidid>https://orcid.org/0000-0002-5756-868X</orcidid><orcidid>https://orcid.org/0000-0002-5478-5662</orcidid><orcidid>https://orcid.org/0000-0002-8491-6483</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2021-07, Vol.68 (7), p.3314-3319
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2544296639
source IEEE Electronic Library (IEL)
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">C –<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">V
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">J –<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">V
Aluminum oxide
Annealing
Anodes
Atomic layer epitaxy
diode
Electric fields
gallium oxide
Gallium oxides
inhomogeneity
Interlayers
Leakage current
metal-interlayer-semiconductor
Metals
Normal distribution
Photonic band gap
Schottky barriers
Schottky contact
Schottky diodes
Statistical analysis
Statistical methods
Substrates
title Improvement of β-Ga2O3 MIS-SBD Interface Using Al-Reacted Interfacial Layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20%CE%B2-Ga2O3%20MIS-SBD%20Interface%20Using%20Al-Reacted%20Interfacial%20Layer&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=He,%20Minghao&rft.date=2021-07-01&rft.volume=68&rft.issue=7&rft.spage=3314&rft.epage=3319&rft.pages=3314-3319&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2021.3081075&rft_dat=%3Cproquest_RIE%3E2544296639%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544296639&rft_id=info:pmid/&rft_ieee_id=9444549&rfr_iscdi=true