Effect of V content on corrosion behavior of high-energy ball milled AA5083

•Ball milled AA5083 with V addition showed superior pitting corrosion resistance.•Nanocrystalline, homogenous microstructures were achieved using ball milling.•No major influence of V addition on the composition of passive film. AA5083 alloys with V additions were produced in the powder form by high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2021-07, Vol.186, p.109465, Article 109465
Hauptverfasser: Esteves, L., Christudasjustus, J., O'Brien, S.P., Witharamage, C.S., Darwish, A.A., Walunj, G., Stack, P., Borkar, T., Akans, R.E., Gupta, R.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 109465
container_title Corrosion science
container_volume 186
creator Esteves, L.
Christudasjustus, J.
O'Brien, S.P.
Witharamage, C.S.
Darwish, A.A.
Walunj, G.
Stack, P.
Borkar, T.
Akans, R.E.
Gupta, R.K.
description •Ball milled AA5083 with V addition showed superior pitting corrosion resistance.•Nanocrystalline, homogenous microstructures were achieved using ball milling.•No major influence of V addition on the composition of passive film. AA5083 alloys with V additions were produced in the powder form by high-energy ball milling and consolidation by spark plasma sintering and cold compaction. X-ray diffraction and energy dispersive X-ray spectroscopy analysis indicated the formation of supersaturated solid solution and grain refinement below 100 nm. Corrosion behavior was investigated using electrochemical impedance spectroscopy, cyclic potentiodynamic polarization, and immersion corrosion tests followed by surface analysis. The composition of the passive film was obtained via X-ray photoelectron spectroscopy. The corrosion resistance of the AA5083 was significantly improved due to the addition of V and high-energy ball milling.
doi_str_mv 10.1016/j.corsci.2021.109465
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544271597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X21002316</els_id><sourcerecordid>2544271597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-c6d452189b1b7a7f17c6ad4d619d72203226d54fc858166e9d13fe8f7e02d8473</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywisU6xHcePDVJVlYeoxAYQOyuxx62jNC5OitS_x1FYs5qZq3tnNAehW4IXBBN-3yxMiL3xC4opSZJivDxDMyKFyjFT_BzNMCY4V4X8ukRXfd9gjGlSZuh17RyYIQsu-8xM6Abo0tClNsbQ-9TVsKt-fIijZee3uxw6iNtTVldtm-1924LNlssSy-IaXbiq7eHmr87Rx-P6ffWcb96eXlbLTW6Kgg254ZaVlEhVk1pUwhFheGWZ5URZQSkuKOW2ZM7IUhLOQVlSOJBOAKZWMlHM0d209xDD9xH6QTfhGLt0UtOSMSpIqUYXm1wmPdJHcPoQ_b6KJ02wHrHpRk_Y9IhNT9hS7GGKQfrgx0PUyQGdAetjAqVt8P8v-AVMD3WC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544271597</pqid></control><display><type>article</type><title>Effect of V content on corrosion behavior of high-energy ball milled AA5083</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Esteves, L. ; Christudasjustus, J. ; O'Brien, S.P. ; Witharamage, C.S. ; Darwish, A.A. ; Walunj, G. ; Stack, P. ; Borkar, T. ; Akans, R.E. ; Gupta, R.K.</creator><creatorcontrib>Esteves, L. ; Christudasjustus, J. ; O'Brien, S.P. ; Witharamage, C.S. ; Darwish, A.A. ; Walunj, G. ; Stack, P. ; Borkar, T. ; Akans, R.E. ; Gupta, R.K.</creatorcontrib><description>•Ball milled AA5083 with V addition showed superior pitting corrosion resistance.•Nanocrystalline, homogenous microstructures were achieved using ball milling.•No major influence of V addition on the composition of passive film. AA5083 alloys with V additions were produced in the powder form by high-energy ball milling and consolidation by spark plasma sintering and cold compaction. X-ray diffraction and energy dispersive X-ray spectroscopy analysis indicated the formation of supersaturated solid solution and grain refinement below 100 nm. Corrosion behavior was investigated using electrochemical impedance spectroscopy, cyclic potentiodynamic polarization, and immersion corrosion tests followed by surface analysis. The composition of the passive film was obtained via X-ray photoelectron spectroscopy. The corrosion resistance of the AA5083 was significantly improved due to the addition of V and high-energy ball milling.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2021.109465</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Aluminum base alloys ; Aluminum-magnesium alloys ; Ball milling ; Cold pressing ; Corrosion effects ; Corrosion resistance ; Corrosion tests ; Electrochemical impedance spectroscopy ; Grain refinement ; High-energy ball milling ; Immersion tests (corrosion) ; Nanocrystalline alloys ; Photoelectrons ; Pitting corrosion ; Plasma sintering ; Sintering (powder metallurgy) ; Solid solutions ; Spark plasma sintering ; Spectrum analysis ; Surface analysis (chemical) ; X-ray spectroscopy</subject><ispartof>Corrosion science, 2021-07, Vol.186, p.109465, Article 109465</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-c6d452189b1b7a7f17c6ad4d619d72203226d54fc858166e9d13fe8f7e02d8473</citedby><cites>FETCH-LOGICAL-c334t-c6d452189b1b7a7f17c6ad4d619d72203226d54fc858166e9d13fe8f7e02d8473</cites><orcidid>0000-0003-1632-9807 ; 0000-0002-1361-9617 ; 0000-0003-4450-4318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2021.109465$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Esteves, L.</creatorcontrib><creatorcontrib>Christudasjustus, J.</creatorcontrib><creatorcontrib>O'Brien, S.P.</creatorcontrib><creatorcontrib>Witharamage, C.S.</creatorcontrib><creatorcontrib>Darwish, A.A.</creatorcontrib><creatorcontrib>Walunj, G.</creatorcontrib><creatorcontrib>Stack, P.</creatorcontrib><creatorcontrib>Borkar, T.</creatorcontrib><creatorcontrib>Akans, R.E.</creatorcontrib><creatorcontrib>Gupta, R.K.</creatorcontrib><title>Effect of V content on corrosion behavior of high-energy ball milled AA5083</title><title>Corrosion science</title><description>•Ball milled AA5083 with V addition showed superior pitting corrosion resistance.•Nanocrystalline, homogenous microstructures were achieved using ball milling.•No major influence of V addition on the composition of passive film. AA5083 alloys with V additions were produced in the powder form by high-energy ball milling and consolidation by spark plasma sintering and cold compaction. X-ray diffraction and energy dispersive X-ray spectroscopy analysis indicated the formation of supersaturated solid solution and grain refinement below 100 nm. Corrosion behavior was investigated using electrochemical impedance spectroscopy, cyclic potentiodynamic polarization, and immersion corrosion tests followed by surface analysis. The composition of the passive film was obtained via X-ray photoelectron spectroscopy. The corrosion resistance of the AA5083 was significantly improved due to the addition of V and high-energy ball milling.</description><subject>Aluminum base alloys</subject><subject>Aluminum-magnesium alloys</subject><subject>Ball milling</subject><subject>Cold pressing</subject><subject>Corrosion effects</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Grain refinement</subject><subject>High-energy ball milling</subject><subject>Immersion tests (corrosion)</subject><subject>Nanocrystalline alloys</subject><subject>Photoelectrons</subject><subject>Pitting corrosion</subject><subject>Plasma sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Solid solutions</subject><subject>Spark plasma sintering</subject><subject>Spectrum analysis</subject><subject>Surface analysis (chemical)</subject><subject>X-ray spectroscopy</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywisU6xHcePDVJVlYeoxAYQOyuxx62jNC5OitS_x1FYs5qZq3tnNAehW4IXBBN-3yxMiL3xC4opSZJivDxDMyKFyjFT_BzNMCY4V4X8ukRXfd9gjGlSZuh17RyYIQsu-8xM6Abo0tClNsbQ-9TVsKt-fIijZee3uxw6iNtTVldtm-1924LNlssSy-IaXbiq7eHmr87Rx-P6ffWcb96eXlbLTW6Kgg254ZaVlEhVk1pUwhFheGWZ5URZQSkuKOW2ZM7IUhLOQVlSOJBOAKZWMlHM0d209xDD9xH6QTfhGLt0UtOSMSpIqUYXm1wmPdJHcPoQ_b6KJ02wHrHpRk_Y9IhNT9hS7GGKQfrgx0PUyQGdAetjAqVt8P8v-AVMD3WC</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Esteves, L.</creator><creator>Christudasjustus, J.</creator><creator>O'Brien, S.P.</creator><creator>Witharamage, C.S.</creator><creator>Darwish, A.A.</creator><creator>Walunj, G.</creator><creator>Stack, P.</creator><creator>Borkar, T.</creator><creator>Akans, R.E.</creator><creator>Gupta, R.K.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1632-9807</orcidid><orcidid>https://orcid.org/0000-0002-1361-9617</orcidid><orcidid>https://orcid.org/0000-0003-4450-4318</orcidid></search><sort><creationdate>20210701</creationdate><title>Effect of V content on corrosion behavior of high-energy ball milled AA5083</title><author>Esteves, L. ; Christudasjustus, J. ; O'Brien, S.P. ; Witharamage, C.S. ; Darwish, A.A. ; Walunj, G. ; Stack, P. ; Borkar, T. ; Akans, R.E. ; Gupta, R.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-c6d452189b1b7a7f17c6ad4d619d72203226d54fc858166e9d13fe8f7e02d8473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum base alloys</topic><topic>Aluminum-magnesium alloys</topic><topic>Ball milling</topic><topic>Cold pressing</topic><topic>Corrosion effects</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Grain refinement</topic><topic>High-energy ball milling</topic><topic>Immersion tests (corrosion)</topic><topic>Nanocrystalline alloys</topic><topic>Photoelectrons</topic><topic>Pitting corrosion</topic><topic>Plasma sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Solid solutions</topic><topic>Spark plasma sintering</topic><topic>Spectrum analysis</topic><topic>Surface analysis (chemical)</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Esteves, L.</creatorcontrib><creatorcontrib>Christudasjustus, J.</creatorcontrib><creatorcontrib>O'Brien, S.P.</creatorcontrib><creatorcontrib>Witharamage, C.S.</creatorcontrib><creatorcontrib>Darwish, A.A.</creatorcontrib><creatorcontrib>Walunj, G.</creatorcontrib><creatorcontrib>Stack, P.</creatorcontrib><creatorcontrib>Borkar, T.</creatorcontrib><creatorcontrib>Akans, R.E.</creatorcontrib><creatorcontrib>Gupta, R.K.</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteves, L.</au><au>Christudasjustus, J.</au><au>O'Brien, S.P.</au><au>Witharamage, C.S.</au><au>Darwish, A.A.</au><au>Walunj, G.</au><au>Stack, P.</au><au>Borkar, T.</au><au>Akans, R.E.</au><au>Gupta, R.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of V content on corrosion behavior of high-energy ball milled AA5083</atitle><jtitle>Corrosion science</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>186</volume><spage>109465</spage><pages>109465-</pages><artnum>109465</artnum><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•Ball milled AA5083 with V addition showed superior pitting corrosion resistance.•Nanocrystalline, homogenous microstructures were achieved using ball milling.•No major influence of V addition on the composition of passive film. AA5083 alloys with V additions were produced in the powder form by high-energy ball milling and consolidation by spark plasma sintering and cold compaction. X-ray diffraction and energy dispersive X-ray spectroscopy analysis indicated the formation of supersaturated solid solution and grain refinement below 100 nm. Corrosion behavior was investigated using electrochemical impedance spectroscopy, cyclic potentiodynamic polarization, and immersion corrosion tests followed by surface analysis. The composition of the passive film was obtained via X-ray photoelectron spectroscopy. The corrosion resistance of the AA5083 was significantly improved due to the addition of V and high-energy ball milling.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2021.109465</doi><orcidid>https://orcid.org/0000-0003-1632-9807</orcidid><orcidid>https://orcid.org/0000-0002-1361-9617</orcidid><orcidid>https://orcid.org/0000-0003-4450-4318</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2021-07, Vol.186, p.109465, Article 109465
issn 0010-938X
1879-0496
language eng
recordid cdi_proquest_journals_2544271597
source Elsevier ScienceDirect Journals Complete
subjects Aluminum base alloys
Aluminum-magnesium alloys
Ball milling
Cold pressing
Corrosion effects
Corrosion resistance
Corrosion tests
Electrochemical impedance spectroscopy
Grain refinement
High-energy ball milling
Immersion tests (corrosion)
Nanocrystalline alloys
Photoelectrons
Pitting corrosion
Plasma sintering
Sintering (powder metallurgy)
Solid solutions
Spark plasma sintering
Spectrum analysis
Surface analysis (chemical)
X-ray spectroscopy
title Effect of V content on corrosion behavior of high-energy ball milled AA5083
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A01%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20V%20content%20on%20corrosion%20behavior%20of%20high-energy%20ball%20milled%20AA5083&rft.jtitle=Corrosion%20science&rft.au=Esteves,%20L.&rft.date=2021-07-01&rft.volume=186&rft.spage=109465&rft.pages=109465-&rft.artnum=109465&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2021.109465&rft_dat=%3Cproquest_cross%3E2544271597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544271597&rft_id=info:pmid/&rft_els_id=S0010938X21002316&rfr_iscdi=true