The continuous adjoint cut-cell method for shape optimization in cavitating flows
•Development of a continuous adjoint formulation for cavitating flows employing a Transport Equation-based Model (TEM).•Accurate computation of geometric sensitivities on Cartesian meshes with cut-cells.•Shape optimization of isolated hydrofoils aiming at cavitation suppression and lift maximization...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2021-06, Vol.224, p.104974, Article 104974 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104974 |
container_title | Computers & fluids |
container_volume | 224 |
creator | Vrionis, P.Y. Samouchos, K.D. Giannakoglou, K.C. |
description | •Development of a continuous adjoint formulation for cavitating flows employing a Transport Equation-based Model (TEM).•Accurate computation of geometric sensitivities on Cartesian meshes with cut-cells.•Shape optimization of isolated hydrofoils aiming at cavitation suppression and lift maximization.
A continuous adjoint formulation for shape optimization in steady-state, cavitating flows is developed. A Transport Equation-based mixture model, extended with the Kunz cavitation model, is implemented to incorporate phase transition due to cavitation and for which the adjoint equations are derived. Flow and adjoint equations are discretized on 2D Cartesian meshes with cut-cells. In the cut-cell method, Cartesian cells intersected by the solid boundaries are reshaped by discarding their solid part, resulting in cells with an arbitrary number of sides. Emphasis is laid on the accurate computation of geometric sensitivities at the cut-cells, required by the adjoint method to compute the objective gradient. The sensitivity derivatives obtained via the adjoint method are compared with finite differences for the purpose of validation. The proposed adjoint formulation is assessed by performing three shape optimizations with two different objectives, namely cavitation suppression and hydrofoil lift maximization over isolated hydrofoils. |
doi_str_mv | 10.1016/j.compfluid.2021.104974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544269642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793021001419</els_id><sourcerecordid>2544269642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b388314745f2b9bd33e5204bececa11eeda2bacca92270a5ea87e05727418e6a3</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BgM-d82tTfu4LN5AEGF9Dmk6dVO6SU3SFf31dqn46tNwhnPOMB9C15SsKKHFbbcyfj-0_WibFSOMTltRSXGCFrSUVUakkKdoQYjIM1lxco4uYuzIpDkTC_S63QE23iXrRj9GrJvOW5ewGVNmoO_xHtLON7j1AcedHgD7Idm9_dbJeoetw0YfbJqUe8dt7z_jJTprdR_h6ncu0dv93XbzmD2_PDxt1s-Z4YKnrOZlyamQIm9ZXdUN55AzImowYDSlAI1mtTZGV4xJonPQpQSSSyYFLaHQfIlu5t4h-I8RYlKdH4ObTiqWC8GKqhBscsnZZYKPMUCrhmD3OnwpStSRn-rUHz915KdmflNyPSdheuJgIahoLDgDjQ1gkmq8_bfjB8U_fqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544269642</pqid></control><display><type>article</type><title>The continuous adjoint cut-cell method for shape optimization in cavitating flows</title><source>Elsevier ScienceDirect Journals</source><creator>Vrionis, P.Y. ; Samouchos, K.D. ; Giannakoglou, K.C.</creator><creatorcontrib>Vrionis, P.Y. ; Samouchos, K.D. ; Giannakoglou, K.C.</creatorcontrib><description>•Development of a continuous adjoint formulation for cavitating flows employing a Transport Equation-based Model (TEM).•Accurate computation of geometric sensitivities on Cartesian meshes with cut-cells.•Shape optimization of isolated hydrofoils aiming at cavitation suppression and lift maximization.
A continuous adjoint formulation for shape optimization in steady-state, cavitating flows is developed. A Transport Equation-based mixture model, extended with the Kunz cavitation model, is implemented to incorporate phase transition due to cavitation and for which the adjoint equations are derived. Flow and adjoint equations are discretized on 2D Cartesian meshes with cut-cells. In the cut-cell method, Cartesian cells intersected by the solid boundaries are reshaped by discarding their solid part, resulting in cells with an arbitrary number of sides. Emphasis is laid on the accurate computation of geometric sensitivities at the cut-cells, required by the adjoint method to compute the objective gradient. The sensitivity derivatives obtained via the adjoint method are compared with finite differences for the purpose of validation. The proposed adjoint formulation is assessed by performing three shape optimizations with two different objectives, namely cavitation suppression and hydrofoil lift maximization over isolated hydrofoils.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2021.104974</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Adjoint method ; Cartesian coordinates ; Cavitation ; Cut-cell method ; Equilibrium flow ; Hydrofoils ; Mathematical models ; Multiphase flow ; Optimization ; Phase transitions ; Sensitivity ; Shape optimization ; Transport equations</subject><ispartof>Computers & fluids, 2021-06, Vol.224, p.104974, Article 104974</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 30, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b388314745f2b9bd33e5204bececa11eeda2bacca92270a5ea87e05727418e6a3</citedby><cites>FETCH-LOGICAL-c343t-b388314745f2b9bd33e5204bececa11eeda2bacca92270a5ea87e05727418e6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045793021001419$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Vrionis, P.Y.</creatorcontrib><creatorcontrib>Samouchos, K.D.</creatorcontrib><creatorcontrib>Giannakoglou, K.C.</creatorcontrib><title>The continuous adjoint cut-cell method for shape optimization in cavitating flows</title><title>Computers & fluids</title><description>•Development of a continuous adjoint formulation for cavitating flows employing a Transport Equation-based Model (TEM).•Accurate computation of geometric sensitivities on Cartesian meshes with cut-cells.•Shape optimization of isolated hydrofoils aiming at cavitation suppression and lift maximization.
A continuous adjoint formulation for shape optimization in steady-state, cavitating flows is developed. A Transport Equation-based mixture model, extended with the Kunz cavitation model, is implemented to incorporate phase transition due to cavitation and for which the adjoint equations are derived. Flow and adjoint equations are discretized on 2D Cartesian meshes with cut-cells. In the cut-cell method, Cartesian cells intersected by the solid boundaries are reshaped by discarding their solid part, resulting in cells with an arbitrary number of sides. Emphasis is laid on the accurate computation of geometric sensitivities at the cut-cells, required by the adjoint method to compute the objective gradient. The sensitivity derivatives obtained via the adjoint method are compared with finite differences for the purpose of validation. The proposed adjoint formulation is assessed by performing three shape optimizations with two different objectives, namely cavitation suppression and hydrofoil lift maximization over isolated hydrofoils.</description><subject>Adjoint method</subject><subject>Cartesian coordinates</subject><subject>Cavitation</subject><subject>Cut-cell method</subject><subject>Equilibrium flow</subject><subject>Hydrofoils</subject><subject>Mathematical models</subject><subject>Multiphase flow</subject><subject>Optimization</subject><subject>Phase transitions</subject><subject>Sensitivity</subject><subject>Shape optimization</subject><subject>Transport equations</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouK7-BgM-d82tTfu4LN5AEGF9Dmk6dVO6SU3SFf31dqn46tNwhnPOMB9C15SsKKHFbbcyfj-0_WibFSOMTltRSXGCFrSUVUakkKdoQYjIM1lxco4uYuzIpDkTC_S63QE23iXrRj9GrJvOW5ewGVNmoO_xHtLON7j1AcedHgD7Idm9_dbJeoetw0YfbJqUe8dt7z_jJTprdR_h6ncu0dv93XbzmD2_PDxt1s-Z4YKnrOZlyamQIm9ZXdUN55AzImowYDSlAI1mtTZGV4xJonPQpQSSSyYFLaHQfIlu5t4h-I8RYlKdH4ObTiqWC8GKqhBscsnZZYKPMUCrhmD3OnwpStSRn-rUHz915KdmflNyPSdheuJgIahoLDgDjQ1gkmq8_bfjB8U_fqM</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Vrionis, P.Y.</creator><creator>Samouchos, K.D.</creator><creator>Giannakoglou, K.C.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210630</creationdate><title>The continuous adjoint cut-cell method for shape optimization in cavitating flows</title><author>Vrionis, P.Y. ; Samouchos, K.D. ; Giannakoglou, K.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b388314745f2b9bd33e5204bececa11eeda2bacca92270a5ea87e05727418e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adjoint method</topic><topic>Cartesian coordinates</topic><topic>Cavitation</topic><topic>Cut-cell method</topic><topic>Equilibrium flow</topic><topic>Hydrofoils</topic><topic>Mathematical models</topic><topic>Multiphase flow</topic><topic>Optimization</topic><topic>Phase transitions</topic><topic>Sensitivity</topic><topic>Shape optimization</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vrionis, P.Y.</creatorcontrib><creatorcontrib>Samouchos, K.D.</creatorcontrib><creatorcontrib>Giannakoglou, K.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vrionis, P.Y.</au><au>Samouchos, K.D.</au><au>Giannakoglou, K.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The continuous adjoint cut-cell method for shape optimization in cavitating flows</atitle><jtitle>Computers & fluids</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>224</volume><spage>104974</spage><pages>104974-</pages><artnum>104974</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•Development of a continuous adjoint formulation for cavitating flows employing a Transport Equation-based Model (TEM).•Accurate computation of geometric sensitivities on Cartesian meshes with cut-cells.•Shape optimization of isolated hydrofoils aiming at cavitation suppression and lift maximization.
A continuous adjoint formulation for shape optimization in steady-state, cavitating flows is developed. A Transport Equation-based mixture model, extended with the Kunz cavitation model, is implemented to incorporate phase transition due to cavitation and for which the adjoint equations are derived. Flow and adjoint equations are discretized on 2D Cartesian meshes with cut-cells. In the cut-cell method, Cartesian cells intersected by the solid boundaries are reshaped by discarding their solid part, resulting in cells with an arbitrary number of sides. Emphasis is laid on the accurate computation of geometric sensitivities at the cut-cells, required by the adjoint method to compute the objective gradient. The sensitivity derivatives obtained via the adjoint method are compared with finite differences for the purpose of validation. The proposed adjoint formulation is assessed by performing three shape optimizations with two different objectives, namely cavitation suppression and hydrofoil lift maximization over isolated hydrofoils.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2021.104974</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2021-06, Vol.224, p.104974, Article 104974 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_journals_2544269642 |
source | Elsevier ScienceDirect Journals |
subjects | Adjoint method Cartesian coordinates Cavitation Cut-cell method Equilibrium flow Hydrofoils Mathematical models Multiphase flow Optimization Phase transitions Sensitivity Shape optimization Transport equations |
title | The continuous adjoint cut-cell method for shape optimization in cavitating flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20continuous%20adjoint%20cut-cell%20method%20for%20shape%20optimization%20in%20cavitating%20flows&rft.jtitle=Computers%20&%20fluids&rft.au=Vrionis,%20P.Y.&rft.date=2021-06-30&rft.volume=224&rft.spage=104974&rft.pages=104974-&rft.artnum=104974&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2021.104974&rft_dat=%3Cproquest_cross%3E2544269642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544269642&rft_id=info:pmid/&rft_els_id=S0045793021001419&rfr_iscdi=true |