The continuous adjoint cut-cell method for shape optimization in cavitating flows

•Development of a continuous adjoint formulation for cavitating flows employing a Transport Equation-based Model (TEM).•Accurate computation of geometric sensitivities on Cartesian meshes with cut-cells.•Shape optimization of isolated hydrofoils aiming at cavitation suppression and lift maximization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2021-06, Vol.224, p.104974, Article 104974
Hauptverfasser: Vrionis, P.Y., Samouchos, K.D., Giannakoglou, K.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104974
container_title Computers & fluids
container_volume 224
creator Vrionis, P.Y.
Samouchos, K.D.
Giannakoglou, K.C.
description •Development of a continuous adjoint formulation for cavitating flows employing a Transport Equation-based Model (TEM).•Accurate computation of geometric sensitivities on Cartesian meshes with cut-cells.•Shape optimization of isolated hydrofoils aiming at cavitation suppression and lift maximization. A continuous adjoint formulation for shape optimization in steady-state, cavitating flows is developed. A Transport Equation-based mixture model, extended with the Kunz cavitation model, is implemented to incorporate phase transition due to cavitation and for which the adjoint equations are derived. Flow and adjoint equations are discretized on 2D Cartesian meshes with cut-cells. In the cut-cell method, Cartesian cells intersected by the solid boundaries are reshaped by discarding their solid part, resulting in cells with an arbitrary number of sides. Emphasis is laid on the accurate computation of geometric sensitivities at the cut-cells, required by the adjoint method to compute the objective gradient. The sensitivity derivatives obtained via the adjoint method are compared with finite differences for the purpose of validation. The proposed adjoint formulation is assessed by performing three shape optimizations with two different objectives, namely cavitation suppression and hydrofoil lift maximization over isolated hydrofoils.
doi_str_mv 10.1016/j.compfluid.2021.104974
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544269642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793021001419</els_id><sourcerecordid>2544269642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-b388314745f2b9bd33e5204bececa11eeda2bacca92270a5ea87e05727418e6a3</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouK7-BgM-d82tTfu4LN5AEGF9Dmk6dVO6SU3SFf31dqn46tNwhnPOMB9C15SsKKHFbbcyfj-0_WibFSOMTltRSXGCFrSUVUakkKdoQYjIM1lxco4uYuzIpDkTC_S63QE23iXrRj9GrJvOW5ewGVNmoO_xHtLON7j1AcedHgD7Idm9_dbJeoetw0YfbJqUe8dt7z_jJTprdR_h6ncu0dv93XbzmD2_PDxt1s-Z4YKnrOZlyamQIm9ZXdUN55AzImowYDSlAI1mtTZGV4xJonPQpQSSSyYFLaHQfIlu5t4h-I8RYlKdH4ObTiqWC8GKqhBscsnZZYKPMUCrhmD3OnwpStSRn-rUHz915KdmflNyPSdheuJgIahoLDgDjQ1gkmq8_bfjB8U_fqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544269642</pqid></control><display><type>article</type><title>The continuous adjoint cut-cell method for shape optimization in cavitating flows</title><source>Elsevier ScienceDirect Journals</source><creator>Vrionis, P.Y. ; Samouchos, K.D. ; Giannakoglou, K.C.</creator><creatorcontrib>Vrionis, P.Y. ; Samouchos, K.D. ; Giannakoglou, K.C.</creatorcontrib><description>•Development of a continuous adjoint formulation for cavitating flows employing a Transport Equation-based Model (TEM).•Accurate computation of geometric sensitivities on Cartesian meshes with cut-cells.•Shape optimization of isolated hydrofoils aiming at cavitation suppression and lift maximization. A continuous adjoint formulation for shape optimization in steady-state, cavitating flows is developed. A Transport Equation-based mixture model, extended with the Kunz cavitation model, is implemented to incorporate phase transition due to cavitation and for which the adjoint equations are derived. Flow and adjoint equations are discretized on 2D Cartesian meshes with cut-cells. In the cut-cell method, Cartesian cells intersected by the solid boundaries are reshaped by discarding their solid part, resulting in cells with an arbitrary number of sides. Emphasis is laid on the accurate computation of geometric sensitivities at the cut-cells, required by the adjoint method to compute the objective gradient. The sensitivity derivatives obtained via the adjoint method are compared with finite differences for the purpose of validation. The proposed adjoint formulation is assessed by performing three shape optimizations with two different objectives, namely cavitation suppression and hydrofoil lift maximization over isolated hydrofoils.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2021.104974</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Adjoint method ; Cartesian coordinates ; Cavitation ; Cut-cell method ; Equilibrium flow ; Hydrofoils ; Mathematical models ; Multiphase flow ; Optimization ; Phase transitions ; Sensitivity ; Shape optimization ; Transport equations</subject><ispartof>Computers &amp; fluids, 2021-06, Vol.224, p.104974, Article 104974</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 30, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-b388314745f2b9bd33e5204bececa11eeda2bacca92270a5ea87e05727418e6a3</citedby><cites>FETCH-LOGICAL-c343t-b388314745f2b9bd33e5204bececa11eeda2bacca92270a5ea87e05727418e6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045793021001419$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Vrionis, P.Y.</creatorcontrib><creatorcontrib>Samouchos, K.D.</creatorcontrib><creatorcontrib>Giannakoglou, K.C.</creatorcontrib><title>The continuous adjoint cut-cell method for shape optimization in cavitating flows</title><title>Computers &amp; fluids</title><description>•Development of a continuous adjoint formulation for cavitating flows employing a Transport Equation-based Model (TEM).•Accurate computation of geometric sensitivities on Cartesian meshes with cut-cells.•Shape optimization of isolated hydrofoils aiming at cavitation suppression and lift maximization. A continuous adjoint formulation for shape optimization in steady-state, cavitating flows is developed. A Transport Equation-based mixture model, extended with the Kunz cavitation model, is implemented to incorporate phase transition due to cavitation and for which the adjoint equations are derived. Flow and adjoint equations are discretized on 2D Cartesian meshes with cut-cells. In the cut-cell method, Cartesian cells intersected by the solid boundaries are reshaped by discarding their solid part, resulting in cells with an arbitrary number of sides. Emphasis is laid on the accurate computation of geometric sensitivities at the cut-cells, required by the adjoint method to compute the objective gradient. The sensitivity derivatives obtained via the adjoint method are compared with finite differences for the purpose of validation. The proposed adjoint formulation is assessed by performing three shape optimizations with two different objectives, namely cavitation suppression and hydrofoil lift maximization over isolated hydrofoils.</description><subject>Adjoint method</subject><subject>Cartesian coordinates</subject><subject>Cavitation</subject><subject>Cut-cell method</subject><subject>Equilibrium flow</subject><subject>Hydrofoils</subject><subject>Mathematical models</subject><subject>Multiphase flow</subject><subject>Optimization</subject><subject>Phase transitions</subject><subject>Sensitivity</subject><subject>Shape optimization</subject><subject>Transport equations</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouK7-BgM-d82tTfu4LN5AEGF9Dmk6dVO6SU3SFf31dqn46tNwhnPOMB9C15SsKKHFbbcyfj-0_WibFSOMTltRSXGCFrSUVUakkKdoQYjIM1lxco4uYuzIpDkTC_S63QE23iXrRj9GrJvOW5ewGVNmoO_xHtLON7j1AcedHgD7Idm9_dbJeoetw0YfbJqUe8dt7z_jJTprdR_h6ncu0dv93XbzmD2_PDxt1s-Z4YKnrOZlyamQIm9ZXdUN55AzImowYDSlAI1mtTZGV4xJonPQpQSSSyYFLaHQfIlu5t4h-I8RYlKdH4ObTiqWC8GKqhBscsnZZYKPMUCrhmD3OnwpStSRn-rUHz915KdmflNyPSdheuJgIahoLDgDjQ1gkmq8_bfjB8U_fqM</recordid><startdate>20210630</startdate><enddate>20210630</enddate><creator>Vrionis, P.Y.</creator><creator>Samouchos, K.D.</creator><creator>Giannakoglou, K.C.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210630</creationdate><title>The continuous adjoint cut-cell method for shape optimization in cavitating flows</title><author>Vrionis, P.Y. ; Samouchos, K.D. ; Giannakoglou, K.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-b388314745f2b9bd33e5204bececa11eeda2bacca92270a5ea87e05727418e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adjoint method</topic><topic>Cartesian coordinates</topic><topic>Cavitation</topic><topic>Cut-cell method</topic><topic>Equilibrium flow</topic><topic>Hydrofoils</topic><topic>Mathematical models</topic><topic>Multiphase flow</topic><topic>Optimization</topic><topic>Phase transitions</topic><topic>Sensitivity</topic><topic>Shape optimization</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vrionis, P.Y.</creatorcontrib><creatorcontrib>Samouchos, K.D.</creatorcontrib><creatorcontrib>Giannakoglou, K.C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vrionis, P.Y.</au><au>Samouchos, K.D.</au><au>Giannakoglou, K.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The continuous adjoint cut-cell method for shape optimization in cavitating flows</atitle><jtitle>Computers &amp; fluids</jtitle><date>2021-06-30</date><risdate>2021</risdate><volume>224</volume><spage>104974</spage><pages>104974-</pages><artnum>104974</artnum><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•Development of a continuous adjoint formulation for cavitating flows employing a Transport Equation-based Model (TEM).•Accurate computation of geometric sensitivities on Cartesian meshes with cut-cells.•Shape optimization of isolated hydrofoils aiming at cavitation suppression and lift maximization. A continuous adjoint formulation for shape optimization in steady-state, cavitating flows is developed. A Transport Equation-based mixture model, extended with the Kunz cavitation model, is implemented to incorporate phase transition due to cavitation and for which the adjoint equations are derived. Flow and adjoint equations are discretized on 2D Cartesian meshes with cut-cells. In the cut-cell method, Cartesian cells intersected by the solid boundaries are reshaped by discarding their solid part, resulting in cells with an arbitrary number of sides. Emphasis is laid on the accurate computation of geometric sensitivities at the cut-cells, required by the adjoint method to compute the objective gradient. The sensitivity derivatives obtained via the adjoint method are compared with finite differences for the purpose of validation. The proposed adjoint formulation is assessed by performing three shape optimizations with two different objectives, namely cavitation suppression and hydrofoil lift maximization over isolated hydrofoils.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2021.104974</doi></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2021-06, Vol.224, p.104974, Article 104974
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_journals_2544269642
source Elsevier ScienceDirect Journals
subjects Adjoint method
Cartesian coordinates
Cavitation
Cut-cell method
Equilibrium flow
Hydrofoils
Mathematical models
Multiphase flow
Optimization
Phase transitions
Sensitivity
Shape optimization
Transport equations
title The continuous adjoint cut-cell method for shape optimization in cavitating flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20continuous%20adjoint%20cut-cell%20method%20for%20shape%20optimization%20in%20cavitating%20flows&rft.jtitle=Computers%20&%20fluids&rft.au=Vrionis,%20P.Y.&rft.date=2021-06-30&rft.volume=224&rft.spage=104974&rft.pages=104974-&rft.artnum=104974&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2021.104974&rft_dat=%3Cproquest_cross%3E2544269642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544269642&rft_id=info:pmid/&rft_els_id=S0045793021001419&rfr_iscdi=true