Internal Dictionary Matching

We introduce data structures answering queries concerning the occurrences of patterns from a given dictionary D in fragments of a given string T of length n . The dictionary is internal in the sense that each pattern in D is given as a fragment of T . This way, D takes space proportional to the numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2021-07, Vol.83 (7), p.2142-2169
Hauptverfasser: Charalampopoulos, Panagiotis, Kociumaka, Tomasz, Mohamed, Manal, Radoszewski, Jakub, Rytter, Wojciech, Waleń, Tomasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2169
container_issue 7
container_start_page 2142
container_title Algorithmica
container_volume 83
creator Charalampopoulos, Panagiotis
Kociumaka, Tomasz
Mohamed, Manal
Radoszewski, Jakub
Rytter, Wojciech
Waleń, Tomasz
description We introduce data structures answering queries concerning the occurrences of patterns from a given dictionary D in fragments of a given string T of length n . The dictionary is internal in the sense that each pattern in D is given as a fragment of T . This way, D takes space proportional to the number of patterns d = | D | rather than their total length, which could be Θ ( n · d ) . In particular, we consider the following types of queries: reporting and counting all occurrences of patterns from D in a fragment T [ i . . j ] and reporting distinct patterns from D that occur in T [ i . . j ] . We show how to construct, in O ( ( n + d ) log O ( 1 ) n ) time, a data structure that answers each of these queries in time O ( log O ( 1 ) n + | o u t p u t | ) . The case of counting patterns is much more involved and needs a combination of a locally consistent parsing with orthogonal range searching. Reporting distinct patterns, on the other hand, uses the structure of maximal repetitions in strings. Finally, we provide tight—up to subpolynomial factors—upper and lower bounds for the case of a dynamic dictionary.
doi_str_mv 10.1007/s00453-021-00821-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544228756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544228756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-45e528347bd463fab3e5785a7be3a7e06559496fb218489e90fb5d356adfc2713</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqHwBxBDJWbD9ePazojKq1IRC8yWk9glVUmKnQ7597gEiY3l3uV8R0cfIZcMbhiAvk0AEgUFziiAyXc8IgWTglNAyY5JAUwbKhXTp-QspQ0A47pUBbladoOPndvO79t6aPvOxXH-4ob6o-3W5-QkuG3yF79_Rt4fH94Wz3T1-rRc3K1oLZQYqESP3Aipq0YqEVwlPGqDTldeOO1BIZayVKHizEhT-hJChY1A5ZpQc83EjFxPvbvYf-19Guym3x9GJctRSs6NRpVTfErVsU8p-mB3sf3Mey0De7BgJws2W7A_FuyYITFBKYe7tY9_1f9Q35OkXdU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544228756</pqid></control><display><type>article</type><title>Internal Dictionary Matching</title><source>SpringerNature Journals</source><creator>Charalampopoulos, Panagiotis ; Kociumaka, Tomasz ; Mohamed, Manal ; Radoszewski, Jakub ; Rytter, Wojciech ; Waleń, Tomasz</creator><creatorcontrib>Charalampopoulos, Panagiotis ; Kociumaka, Tomasz ; Mohamed, Manal ; Radoszewski, Jakub ; Rytter, Wojciech ; Waleń, Tomasz</creatorcontrib><description>We introduce data structures answering queries concerning the occurrences of patterns from a given dictionary D in fragments of a given string T of length n . The dictionary is internal in the sense that each pattern in D is given as a fragment of T . This way, D takes space proportional to the number of patterns d = | D | rather than their total length, which could be Θ ( n · d ) . In particular, we consider the following types of queries: reporting and counting all occurrences of patterns from D in a fragment T [ i . . j ] and reporting distinct patterns from D that occur in T [ i . . j ] . We show how to construct, in O ( ( n + d ) log O ( 1 ) n ) time, a data structure that answers each of these queries in time O ( log O ( 1 ) n + | o u t p u t | ) . The case of counting patterns is much more involved and needs a combination of a locally consistent parsing with orthogonal range searching. Reporting distinct patterns, on the other hand, uses the structure of maximal repetitions in strings. Finally, we provide tight—up to subpolynomial factors—upper and lower bounds for the case of a dynamic dictionary.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-021-00821-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Computer Science ; Computer Systems Organization and Communication Networks ; Data structures ; Data Structures and Information Theory ; Dictionaries ; Lower bounds ; Mathematics of Computing ; Queries ; Strings ; Theory of Computation</subject><ispartof>Algorithmica, 2021-07, Vol.83 (7), p.2142-2169</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-45e528347bd463fab3e5785a7be3a7e06559496fb218489e90fb5d356adfc2713</citedby><cites>FETCH-LOGICAL-c363t-45e528347bd463fab3e5785a7be3a7e06559496fb218489e90fb5d356adfc2713</cites><orcidid>0000-0002-0067-6401 ; 0000-0002-2477-1702 ; 0000-0002-6024-1557 ; 0000-0002-7369-3309 ; 0000-0002-9162-6724 ; 0000-0002-1435-5051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-021-00821-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-021-00821-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Charalampopoulos, Panagiotis</creatorcontrib><creatorcontrib>Kociumaka, Tomasz</creatorcontrib><creatorcontrib>Mohamed, Manal</creatorcontrib><creatorcontrib>Radoszewski, Jakub</creatorcontrib><creatorcontrib>Rytter, Wojciech</creatorcontrib><creatorcontrib>Waleń, Tomasz</creatorcontrib><title>Internal Dictionary Matching</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We introduce data structures answering queries concerning the occurrences of patterns from a given dictionary D in fragments of a given string T of length n . The dictionary is internal in the sense that each pattern in D is given as a fragment of T . This way, D takes space proportional to the number of patterns d = | D | rather than their total length, which could be Θ ( n · d ) . In particular, we consider the following types of queries: reporting and counting all occurrences of patterns from D in a fragment T [ i . . j ] and reporting distinct patterns from D that occur in T [ i . . j ] . We show how to construct, in O ( ( n + d ) log O ( 1 ) n ) time, a data structure that answers each of these queries in time O ( log O ( 1 ) n + | o u t p u t | ) . The case of counting patterns is much more involved and needs a combination of a locally consistent parsing with orthogonal range searching. Reporting distinct patterns, on the other hand, uses the structure of maximal repetitions in strings. Finally, we provide tight—up to subpolynomial factors—upper and lower bounds for the case of a dynamic dictionary.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data structures</subject><subject>Data Structures and Information Theory</subject><subject>Dictionaries</subject><subject>Lower bounds</subject><subject>Mathematics of Computing</subject><subject>Queries</subject><subject>Strings</subject><subject>Theory of Computation</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqHwBxBDJWbD9ePazojKq1IRC8yWk9glVUmKnQ7597gEiY3l3uV8R0cfIZcMbhiAvk0AEgUFziiAyXc8IgWTglNAyY5JAUwbKhXTp-QspQ0A47pUBbladoOPndvO79t6aPvOxXH-4ob6o-3W5-QkuG3yF79_Rt4fH94Wz3T1-rRc3K1oLZQYqESP3Aipq0YqEVwlPGqDTldeOO1BIZayVKHizEhT-hJChY1A5ZpQc83EjFxPvbvYf-19Guym3x9GJctRSs6NRpVTfErVsU8p-mB3sf3Mey0De7BgJws2W7A_FuyYITFBKYe7tY9_1f9Q35OkXdU</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Charalampopoulos, Panagiotis</creator><creator>Kociumaka, Tomasz</creator><creator>Mohamed, Manal</creator><creator>Radoszewski, Jakub</creator><creator>Rytter, Wojciech</creator><creator>Waleń, Tomasz</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0067-6401</orcidid><orcidid>https://orcid.org/0000-0002-2477-1702</orcidid><orcidid>https://orcid.org/0000-0002-6024-1557</orcidid><orcidid>https://orcid.org/0000-0002-7369-3309</orcidid><orcidid>https://orcid.org/0000-0002-9162-6724</orcidid><orcidid>https://orcid.org/0000-0002-1435-5051</orcidid></search><sort><creationdate>20210701</creationdate><title>Internal Dictionary Matching</title><author>Charalampopoulos, Panagiotis ; Kociumaka, Tomasz ; Mohamed, Manal ; Radoszewski, Jakub ; Rytter, Wojciech ; Waleń, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-45e528347bd463fab3e5785a7be3a7e06559496fb218489e90fb5d356adfc2713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data structures</topic><topic>Data Structures and Information Theory</topic><topic>Dictionaries</topic><topic>Lower bounds</topic><topic>Mathematics of Computing</topic><topic>Queries</topic><topic>Strings</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charalampopoulos, Panagiotis</creatorcontrib><creatorcontrib>Kociumaka, Tomasz</creatorcontrib><creatorcontrib>Mohamed, Manal</creatorcontrib><creatorcontrib>Radoszewski, Jakub</creatorcontrib><creatorcontrib>Rytter, Wojciech</creatorcontrib><creatorcontrib>Waleń, Tomasz</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charalampopoulos, Panagiotis</au><au>Kociumaka, Tomasz</au><au>Mohamed, Manal</au><au>Radoszewski, Jakub</au><au>Rytter, Wojciech</au><au>Waleń, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Internal Dictionary Matching</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>83</volume><issue>7</issue><spage>2142</spage><epage>2169</epage><pages>2142-2169</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We introduce data structures answering queries concerning the occurrences of patterns from a given dictionary D in fragments of a given string T of length n . The dictionary is internal in the sense that each pattern in D is given as a fragment of T . This way, D takes space proportional to the number of patterns d = | D | rather than their total length, which could be Θ ( n · d ) . In particular, we consider the following types of queries: reporting and counting all occurrences of patterns from D in a fragment T [ i . . j ] and reporting distinct patterns from D that occur in T [ i . . j ] . We show how to construct, in O ( ( n + d ) log O ( 1 ) n ) time, a data structure that answers each of these queries in time O ( log O ( 1 ) n + | o u t p u t | ) . The case of counting patterns is much more involved and needs a combination of a locally consistent parsing with orthogonal range searching. Reporting distinct patterns, on the other hand, uses the structure of maximal repetitions in strings. Finally, we provide tight—up to subpolynomial factors—upper and lower bounds for the case of a dynamic dictionary.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-021-00821-y</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-0067-6401</orcidid><orcidid>https://orcid.org/0000-0002-2477-1702</orcidid><orcidid>https://orcid.org/0000-0002-6024-1557</orcidid><orcidid>https://orcid.org/0000-0002-7369-3309</orcidid><orcidid>https://orcid.org/0000-0002-9162-6724</orcidid><orcidid>https://orcid.org/0000-0002-1435-5051</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2021-07, Vol.83 (7), p.2142-2169
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2544228756
source SpringerNature Journals
subjects Algorithm Analysis and Problem Complexity
Algorithms
Computer Science
Computer Systems Organization and Communication Networks
Data structures
Data Structures and Information Theory
Dictionaries
Lower bounds
Mathematics of Computing
Queries
Strings
Theory of Computation
title Internal Dictionary Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A02%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Internal%20Dictionary%20Matching&rft.jtitle=Algorithmica&rft.au=Charalampopoulos,%20Panagiotis&rft.date=2021-07-01&rft.volume=83&rft.issue=7&rft.spage=2142&rft.epage=2169&rft.pages=2142-2169&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-021-00821-y&rft_dat=%3Cproquest_cross%3E2544228756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544228756&rft_id=info:pmid/&rfr_iscdi=true