Dense numerical semigroups

A numerical semigroup S is dense if for all s ∈ S \ { 0 } we have s - 1 , s + 1 ∩ S ≠ ∅ . We give algorithms to compute the whole set of dense numerical semigroups with fixed genus, Frobenius number and multiplicity. Furthermore, we solve the Frobenius problem for dense numerical semigroups with emb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2021, Vol.103 (1), p.221-235
Hauptverfasser: Rosales, J. C., Branco, M. B., Faria, M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 1
container_start_page 221
container_title Semigroup forum
container_volume 103
creator Rosales, J. C.
Branco, M. B.
Faria, M. C.
description A numerical semigroup S is dense if for all s ∈ S \ { 0 } we have s - 1 , s + 1 ∩ S ≠ ∅ . We give algorithms to compute the whole set of dense numerical semigroups with fixed genus, Frobenius number and multiplicity. Furthermore, we solve the Frobenius problem for dense numerical semigroups with embedding dimension three.
doi_str_mv 10.1007/s00233-021-10190-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2544228678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544228678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9d599492330838e908f0286e73704d02ef256e6ea507c513ac6741a611d411403</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_oKeC5-jMJJtsjlI_oeBFzyHszpYt3Q-T7sF_b3QFb56Ggfd5X3iEWCHcIIC9TQCklARCiYAOJJ6IBWpFklDZU7EAUFaiQzoXFyntIf9g1EKs7rlPvO6njmNbhcM6cdfu4jCN6VKcNeGQ-Or3LsX748Pb5lluX59eNndbWZGFo3R14Zx2eR5KVbKDsgEqDVtlQddA3FBh2HAowFYFqlAZqzEYxFojalBLcT33jnH4mDgd_X6YYp8nPRVaUy6zZU7RnKrikFLkxo-x7UL89Aj-24GfHfjswP848JghNUMph_sdx7_qf6gvZMxa7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2544228678</pqid></control><display><type>article</type><title>Dense numerical semigroups</title><source>SpringerLink Journals</source><creator>Rosales, J. C. ; Branco, M. B. ; Faria, M. C.</creator><creatorcontrib>Rosales, J. C. ; Branco, M. B. ; Faria, M. C.</creatorcontrib><description>A numerical semigroup S is dense if for all s ∈ S \ { 0 } we have s - 1 , s + 1 ∩ S ≠ ∅ . We give algorithms to compute the whole set of dense numerical semigroups with fixed genus, Frobenius number and multiplicity. Furthermore, we solve the Frobenius problem for dense numerical semigroups with embedding dimension three.</description><identifier>ISSN: 0037-1912</identifier><identifier>EISSN: 1432-2137</identifier><identifier>DOI: 10.1007/s00233-021-10190-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Mathematics ; Mathematics and Statistics ; Research Article ; Semigroups</subject><ispartof>Semigroup forum, 2021, Vol.103 (1), p.221-235</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9d599492330838e908f0286e73704d02ef256e6ea507c513ac6741a611d411403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00233-021-10190-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00233-021-10190-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rosales, J. C.</creatorcontrib><creatorcontrib>Branco, M. B.</creatorcontrib><creatorcontrib>Faria, M. C.</creatorcontrib><title>Dense numerical semigroups</title><title>Semigroup forum</title><addtitle>Semigroup Forum</addtitle><description>A numerical semigroup S is dense if for all s ∈ S \ { 0 } we have s - 1 , s + 1 ∩ S ≠ ∅ . We give algorithms to compute the whole set of dense numerical semigroups with fixed genus, Frobenius number and multiplicity. Furthermore, we solve the Frobenius problem for dense numerical semigroups with embedding dimension three.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Research Article</subject><subject>Semigroups</subject><issn>0037-1912</issn><issn>1432-2137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_oKeC5-jMJJtsjlI_oeBFzyHszpYt3Q-T7sF_b3QFb56Ggfd5X3iEWCHcIIC9TQCklARCiYAOJJ6IBWpFklDZU7EAUFaiQzoXFyntIf9g1EKs7rlPvO6njmNbhcM6cdfu4jCN6VKcNeGQ-Or3LsX748Pb5lluX59eNndbWZGFo3R14Zx2eR5KVbKDsgEqDVtlQddA3FBh2HAowFYFqlAZqzEYxFojalBLcT33jnH4mDgd_X6YYp8nPRVaUy6zZU7RnKrikFLkxo-x7UL89Aj-24GfHfjswP848JghNUMph_sdx7_qf6gvZMxa7w</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Rosales, J. C.</creator><creator>Branco, M. B.</creator><creator>Faria, M. C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Dense numerical semigroups</title><author>Rosales, J. C. ; Branco, M. B. ; Faria, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9d599492330838e908f0286e73704d02ef256e6ea507c513ac6741a611d411403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Research Article</topic><topic>Semigroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosales, J. C.</creatorcontrib><creatorcontrib>Branco, M. B.</creatorcontrib><creatorcontrib>Faria, M. C.</creatorcontrib><collection>CrossRef</collection><jtitle>Semigroup forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosales, J. C.</au><au>Branco, M. B.</au><au>Faria, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dense numerical semigroups</atitle><jtitle>Semigroup forum</jtitle><stitle>Semigroup Forum</stitle><date>2021</date><risdate>2021</risdate><volume>103</volume><issue>1</issue><spage>221</spage><epage>235</epage><pages>221-235</pages><issn>0037-1912</issn><eissn>1432-2137</eissn><abstract>A numerical semigroup S is dense if for all s ∈ S \ { 0 } we have s - 1 , s + 1 ∩ S ≠ ∅ . We give algorithms to compute the whole set of dense numerical semigroups with fixed genus, Frobenius number and multiplicity. Furthermore, we solve the Frobenius problem for dense numerical semigroups with embedding dimension three.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00233-021-10190-1</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-1912
ispartof Semigroup forum, 2021, Vol.103 (1), p.221-235
issn 0037-1912
1432-2137
language eng
recordid cdi_proquest_journals_2544228678
source SpringerLink Journals
subjects Algebra
Algorithms
Mathematics
Mathematics and Statistics
Research Article
Semigroups
title Dense numerical semigroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dense%20numerical%20semigroups&rft.jtitle=Semigroup%20forum&rft.au=Rosales,%20J.%20C.&rft.date=2021&rft.volume=103&rft.issue=1&rft.spage=221&rft.epage=235&rft.pages=221-235&rft.issn=0037-1912&rft.eissn=1432-2137&rft_id=info:doi/10.1007/s00233-021-10190-1&rft_dat=%3Cproquest_cross%3E2544228678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2544228678&rft_id=info:pmid/&rfr_iscdi=true