Direct observation of the in-plane crack formation of O3-Na0.8Mg0.2Fe0.4Mn0.4O2 due to oxygen gas evolution for Na-ion batteries

Crack formation is considered one of the significant failure modes of layered oxide cathode materials for Na-ion batteries because particle cracks accelerate electrolyte decomposition, transition metal dissolution, and electrical contact loss. However, the crack formation mechanism of layered sodium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-06, Vol.9 (24), p.14074-14084
Hauptverfasser: Lee, Suyeon, Doo, Sung Wook, Jung, Min Soo, Shin Gwon Lim, Kim, Kanghyeon, Lee, Kyu Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14084
container_issue 24
container_start_page 14074
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Lee, Suyeon
Doo, Sung Wook
Jung, Min Soo
Shin Gwon Lim
Kim, Kanghyeon
Lee, Kyu Tae
description Crack formation is considered one of the significant failure modes of layered oxide cathode materials for Na-ion batteries because particle cracks accelerate electrolyte decomposition, transition metal dissolution, and electrical contact loss. However, the crack formation mechanism of layered sodium transition metal oxides has not been fully understood yet. Herein, the in-plane crack formation mechanism of O3-type Na0.8Mg0.2Fe0.4Mn0.4O2 is demonstrated in terms of oxygen gas evolution due to air-exposure using in situ mass spectrometry and various atomic-scale analyses. When Na0.8Mg0.2Fe0.4Mn0.4O2 is exposed to air, Na+ ions are unevenly deintercalated in a form of stripe pattern along the in-plane direction. The deintercalation of Na+ ions gives rise to phase transition from the layered structure to the disordered structure, including spinel-like and rock salt-like structures, resulting in forming the nanoscale vertical heterostructure of alternating layered and disordered phases along the out-of-plane direction. The formation of the disordered structure is accompanied by oxygen gas evolution. As a result, cracks occur along the in-plane direction of Na0.8Mg0.2Fe0.4Mn0.4O2 because of the internal gas pressure due to oxygen gas evolution. Moreover, air-stable surface-modified Na0.8Mg0.2Fe0.4Mn0.4O2 is introduced to suppress crack formation, leading to excellent electrochemical performance, such as stable capacity retention over 200 cycles.
doi_str_mv 10.1039/d1ta02639a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2543964703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543964703</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-1571f616a2f8097e942df8a02864dce83375fb8269cb9da3e06a2e1934cb517e3</originalsourceid><addsrcrecordid>eNo9T8tOwzAQtBBIVKUXvsASZ4f1I459RIUCUh8XOFdOsi4pJS6OU8GNTyc81DnsjjS7MxpCLjlkHKS9rnlyILS07oSMBOTACmX16ZEbc04mXbeFAQZAWzsiX7dNxCrRUHYYDy41oaXB0_SCtGnZfudapFV01Sv1Ib4d9ZVkSweZWWwgEzOETC3aYawErXukKdDw8bnBlm5cR_EQdv3v42BBl4790NKlhLHB7oKcebfrcPK_x-R5dvc0fWDz1f3j9GbO9pzLxHhecK-5dsIbsAVaJWpvhrpGq7pCI2WR-9IIbavS1k4iDKfIrVRVmfMC5Zhc_fnuY3jvsUvrbehjO0SuRa6k1aoAKb8BTa1fSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543964703</pqid></control><display><type>article</type><title>Direct observation of the in-plane crack formation of O3-Na0.8Mg0.2Fe0.4Mn0.4O2 due to oxygen gas evolution for Na-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Lee, Suyeon ; Doo, Sung Wook ; Jung, Min Soo ; Shin Gwon Lim ; Kim, Kanghyeon ; Lee, Kyu Tae</creator><creatorcontrib>Lee, Suyeon ; Doo, Sung Wook ; Jung, Min Soo ; Shin Gwon Lim ; Kim, Kanghyeon ; Lee, Kyu Tae</creatorcontrib><description>Crack formation is considered one of the significant failure modes of layered oxide cathode materials for Na-ion batteries because particle cracks accelerate electrolyte decomposition, transition metal dissolution, and electrical contact loss. However, the crack formation mechanism of layered sodium transition metal oxides has not been fully understood yet. Herein, the in-plane crack formation mechanism of O3-type Na0.8Mg0.2Fe0.4Mn0.4O2 is demonstrated in terms of oxygen gas evolution due to air-exposure using in situ mass spectrometry and various atomic-scale analyses. When Na0.8Mg0.2Fe0.4Mn0.4O2 is exposed to air, Na+ ions are unevenly deintercalated in a form of stripe pattern along the in-plane direction. The deintercalation of Na+ ions gives rise to phase transition from the layered structure to the disordered structure, including spinel-like and rock salt-like structures, resulting in forming the nanoscale vertical heterostructure of alternating layered and disordered phases along the out-of-plane direction. The formation of the disordered structure is accompanied by oxygen gas evolution. As a result, cracks occur along the in-plane direction of Na0.8Mg0.2Fe0.4Mn0.4O2 because of the internal gas pressure due to oxygen gas evolution. Moreover, air-stable surface-modified Na0.8Mg0.2Fe0.4Mn0.4O2 is introduced to suppress crack formation, leading to excellent electrochemical performance, such as stable capacity retention over 200 cycles.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta02639a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atomic properties ; Batteries ; Contact loss ; Cracks ; Electric contacts ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Evolution ; Failure modes ; Gas evolution ; Gas pressure ; Heterostructures ; Ions ; Mass spectrometry ; Mass spectroscopy ; Oxygen ; Phase transitions ; Rechargeable batteries ; Sodium ; Sodium-ion batteries ; Transition metal oxides</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-06, Vol.9 (24), p.14074-14084</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Suyeon</creatorcontrib><creatorcontrib>Doo, Sung Wook</creatorcontrib><creatorcontrib>Jung, Min Soo</creatorcontrib><creatorcontrib>Shin Gwon Lim</creatorcontrib><creatorcontrib>Kim, Kanghyeon</creatorcontrib><creatorcontrib>Lee, Kyu Tae</creatorcontrib><title>Direct observation of the in-plane crack formation of O3-Na0.8Mg0.2Fe0.4Mn0.4O2 due to oxygen gas evolution for Na-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Crack formation is considered one of the significant failure modes of layered oxide cathode materials for Na-ion batteries because particle cracks accelerate electrolyte decomposition, transition metal dissolution, and electrical contact loss. However, the crack formation mechanism of layered sodium transition metal oxides has not been fully understood yet. Herein, the in-plane crack formation mechanism of O3-type Na0.8Mg0.2Fe0.4Mn0.4O2 is demonstrated in terms of oxygen gas evolution due to air-exposure using in situ mass spectrometry and various atomic-scale analyses. When Na0.8Mg0.2Fe0.4Mn0.4O2 is exposed to air, Na+ ions are unevenly deintercalated in a form of stripe pattern along the in-plane direction. The deintercalation of Na+ ions gives rise to phase transition from the layered structure to the disordered structure, including spinel-like and rock salt-like structures, resulting in forming the nanoscale vertical heterostructure of alternating layered and disordered phases along the out-of-plane direction. The formation of the disordered structure is accompanied by oxygen gas evolution. As a result, cracks occur along the in-plane direction of Na0.8Mg0.2Fe0.4Mn0.4O2 because of the internal gas pressure due to oxygen gas evolution. Moreover, air-stable surface-modified Na0.8Mg0.2Fe0.4Mn0.4O2 is introduced to suppress crack formation, leading to excellent electrochemical performance, such as stable capacity retention over 200 cycles.</description><subject>Atomic properties</subject><subject>Batteries</subject><subject>Contact loss</subject><subject>Cracks</subject><subject>Electric contacts</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Evolution</subject><subject>Failure modes</subject><subject>Gas evolution</subject><subject>Gas pressure</subject><subject>Heterostructures</subject><subject>Ions</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Oxygen</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Transition metal oxides</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9T8tOwzAQtBBIVKUXvsASZ4f1I459RIUCUh8XOFdOsi4pJS6OU8GNTyc81DnsjjS7MxpCLjlkHKS9rnlyILS07oSMBOTACmX16ZEbc04mXbeFAQZAWzsiX7dNxCrRUHYYDy41oaXB0_SCtGnZfudapFV01Sv1Ib4d9ZVkSweZWWwgEzOETC3aYawErXukKdDw8bnBlm5cR_EQdv3v42BBl4790NKlhLHB7oKcebfrcPK_x-R5dvc0fWDz1f3j9GbO9pzLxHhecK-5dsIbsAVaJWpvhrpGq7pCI2WR-9IIbavS1k4iDKfIrVRVmfMC5Zhc_fnuY3jvsUvrbehjO0SuRa6k1aoAKb8BTa1fSw</recordid><startdate>20210628</startdate><enddate>20210628</enddate><creator>Lee, Suyeon</creator><creator>Doo, Sung Wook</creator><creator>Jung, Min Soo</creator><creator>Shin Gwon Lim</creator><creator>Kim, Kanghyeon</creator><creator>Lee, Kyu Tae</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210628</creationdate><title>Direct observation of the in-plane crack formation of O3-Na0.8Mg0.2Fe0.4Mn0.4O2 due to oxygen gas evolution for Na-ion batteries</title><author>Lee, Suyeon ; Doo, Sung Wook ; Jung, Min Soo ; Shin Gwon Lim ; Kim, Kanghyeon ; Lee, Kyu Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-1571f616a2f8097e942df8a02864dce83375fb8269cb9da3e06a2e1934cb517e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic properties</topic><topic>Batteries</topic><topic>Contact loss</topic><topic>Cracks</topic><topic>Electric contacts</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Evolution</topic><topic>Failure modes</topic><topic>Gas evolution</topic><topic>Gas pressure</topic><topic>Heterostructures</topic><topic>Ions</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Oxygen</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Transition metal oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Suyeon</creatorcontrib><creatorcontrib>Doo, Sung Wook</creatorcontrib><creatorcontrib>Jung, Min Soo</creatorcontrib><creatorcontrib>Shin Gwon Lim</creatorcontrib><creatorcontrib>Kim, Kanghyeon</creatorcontrib><creatorcontrib>Lee, Kyu Tae</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Suyeon</au><au>Doo, Sung Wook</au><au>Jung, Min Soo</au><au>Shin Gwon Lim</au><au>Kim, Kanghyeon</au><au>Lee, Kyu Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct observation of the in-plane crack formation of O3-Na0.8Mg0.2Fe0.4Mn0.4O2 due to oxygen gas evolution for Na-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-06-28</date><risdate>2021</risdate><volume>9</volume><issue>24</issue><spage>14074</spage><epage>14084</epage><pages>14074-14084</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Crack formation is considered one of the significant failure modes of layered oxide cathode materials for Na-ion batteries because particle cracks accelerate electrolyte decomposition, transition metal dissolution, and electrical contact loss. However, the crack formation mechanism of layered sodium transition metal oxides has not been fully understood yet. Herein, the in-plane crack formation mechanism of O3-type Na0.8Mg0.2Fe0.4Mn0.4O2 is demonstrated in terms of oxygen gas evolution due to air-exposure using in situ mass spectrometry and various atomic-scale analyses. When Na0.8Mg0.2Fe0.4Mn0.4O2 is exposed to air, Na+ ions are unevenly deintercalated in a form of stripe pattern along the in-plane direction. The deintercalation of Na+ ions gives rise to phase transition from the layered structure to the disordered structure, including spinel-like and rock salt-like structures, resulting in forming the nanoscale vertical heterostructure of alternating layered and disordered phases along the out-of-plane direction. The formation of the disordered structure is accompanied by oxygen gas evolution. As a result, cracks occur along the in-plane direction of Na0.8Mg0.2Fe0.4Mn0.4O2 because of the internal gas pressure due to oxygen gas evolution. Moreover, air-stable surface-modified Na0.8Mg0.2Fe0.4Mn0.4O2 is introduced to suppress crack formation, leading to excellent electrochemical performance, such as stable capacity retention over 200 cycles.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta02639a</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-06, Vol.9 (24), p.14074-14084
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2543964703
source Royal Society Of Chemistry Journals 2008-
subjects Atomic properties
Batteries
Contact loss
Cracks
Electric contacts
Electrochemical analysis
Electrochemistry
Electrode materials
Evolution
Failure modes
Gas evolution
Gas pressure
Heterostructures
Ions
Mass spectrometry
Mass spectroscopy
Oxygen
Phase transitions
Rechargeable batteries
Sodium
Sodium-ion batteries
Transition metal oxides
title Direct observation of the in-plane crack formation of O3-Na0.8Mg0.2Fe0.4Mn0.4O2 due to oxygen gas evolution for Na-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20observation%20of%20the%20in-plane%20crack%20formation%20of%20O3-Na0.8Mg0.2Fe0.4Mn0.4O2%20due%20to%20oxygen%20gas%20evolution%20for%20Na-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Lee,%20Suyeon&rft.date=2021-06-28&rft.volume=9&rft.issue=24&rft.spage=14074&rft.epage=14084&rft.pages=14074-14084&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta02639a&rft_dat=%3Cproquest%3E2543964703%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543964703&rft_id=info:pmid/&rfr_iscdi=true