Strategies for smarter catchment hydrology models: incorporating scaling and better process representation

Hydrological models have proliferated in the past several decades prompting debates on the virtues and shortcomings of various modelling approaches. Rather than critiquing individual models or modelling approaches, the objective here is to address the critical issues of scaling and hydrological proc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoscience Letters 2021-06, Vol.8 (1), p.1-14, Article 24
1. Verfasser: Sidle, Roy C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrological models have proliferated in the past several decades prompting debates on the virtues and shortcomings of various modelling approaches. Rather than critiquing individual models or modelling approaches, the objective here is to address the critical issues of scaling and hydrological process representation in various types of models with suggestions for improving these attributes in a parsimonious manner that captures and explains their functionality as simply as possible. This discussion focuses mostly on conceptual and physical/process-based models where understanding the internal catchment processes and hydrologic pathways is important. Such hydrological models can be improved by using data from advanced remote sensing (both spatial and temporal) and derivatives, applications of machine learning, flexible structures, and informing models through nested catchment studies in which internal catchment processes are elucidated. Incorporating concepts of hydrological connectivity into flexible model structures is a promising approach for improving flow path representation. Also important is consideration of the scale dependency of hydrological parameters to avoid scale mismatch between measured and modelled parameters. Examples are presented from remote high-elevation regions where water sources and pathways differ from temperate and tropical environments where more attention has been focused. The challenge of incorporating spatially and temporally variable water inputs, hydrologically pathways, climate, and land use into hydrological models requires modellers to collaborate with catchment hydrologists to include important processes at relevant scales—i.e. develop smarter hydrological models.
ISSN:2196-4092
2196-4092
DOI:10.1186/s40562-021-00193-9