Plant Disease Detection Using Image Processing and Machine Learning

One of the important and tedious task in agricultural practices is the detection of the disease on crops. It requires huge time as well as skilled labor. This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Kulkarni, Pranesh, Karwande, Atharva, Kolhe, Tejas, Kamble, Soham, Joshi, Akshay, Wyawahare, Medha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kulkarni, Pranesh
Karwande, Atharva
Kolhe, Tejas
Kamble, Soham
Joshi, Akshay
Wyawahare, Medha
description One of the important and tedious task in agricultural practices is the detection of the disease on crops. It requires huge time as well as skilled labor. This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques. The proposed system is able to detect 20 different diseases of 5 common plants with 93% accuracy.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2543902108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543902108</sourcerecordid><originalsourceid>FETCH-proquest_journals_25439021083</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPBciJtW67lVFBR60HMJda0pNdFs-n-L-ABPAzMzEREqtUryFHEmYuZOSonrDWaZikRR9doGKA2TZoKSAjXBOAtXNraF41O3BJV3DfFXaHuDs24exhKcSHs7yoWY3nXPFP84F8v97lIckpd374E41J0bvB1TjVmqthJXMlf_XR-szTmG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543902108</pqid></control><display><type>article</type><title>Plant Disease Detection Using Image Processing and Machine Learning</title><source>Free E- Journals</source><creator>Kulkarni, Pranesh ; Karwande, Atharva ; Kolhe, Tejas ; Kamble, Soham ; Joshi, Akshay ; Wyawahare, Medha</creator><creatorcontrib>Kulkarni, Pranesh ; Karwande, Atharva ; Kolhe, Tejas ; Kamble, Soham ; Joshi, Akshay ; Wyawahare, Medha</creatorcontrib><description>One of the important and tedious task in agricultural practices is the detection of the disease on crops. It requires huge time as well as skilled labor. This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques. The proposed system is able to detect 20 different diseases of 5 common plants with 93% accuracy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Agricultural practices ; Computer vision ; Crop diseases ; Image processing ; Machine learning ; Plant diseases</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kulkarni, Pranesh</creatorcontrib><creatorcontrib>Karwande, Atharva</creatorcontrib><creatorcontrib>Kolhe, Tejas</creatorcontrib><creatorcontrib>Kamble, Soham</creatorcontrib><creatorcontrib>Joshi, Akshay</creatorcontrib><creatorcontrib>Wyawahare, Medha</creatorcontrib><title>Plant Disease Detection Using Image Processing and Machine Learning</title><title>arXiv.org</title><description>One of the important and tedious task in agricultural practices is the detection of the disease on crops. It requires huge time as well as skilled labor. This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques. The proposed system is able to detect 20 different diseases of 5 common plants with 93% accuracy.</description><subject>Agricultural practices</subject><subject>Computer vision</subject><subject>Crop diseases</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Plant diseases</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPBciJtW67lVFBR60HMJda0pNdFs-n-L-ABPAzMzEREqtUryFHEmYuZOSonrDWaZikRR9doGKA2TZoKSAjXBOAtXNraF41O3BJV3DfFXaHuDs24exhKcSHs7yoWY3nXPFP84F8v97lIckpd374E41J0bvB1TjVmqthJXMlf_XR-szTmG</recordid><startdate>20211122</startdate><enddate>20211122</enddate><creator>Kulkarni, Pranesh</creator><creator>Karwande, Atharva</creator><creator>Kolhe, Tejas</creator><creator>Kamble, Soham</creator><creator>Joshi, Akshay</creator><creator>Wyawahare, Medha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211122</creationdate><title>Plant Disease Detection Using Image Processing and Machine Learning</title><author>Kulkarni, Pranesh ; Karwande, Atharva ; Kolhe, Tejas ; Kamble, Soham ; Joshi, Akshay ; Wyawahare, Medha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25439021083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural practices</topic><topic>Computer vision</topic><topic>Crop diseases</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Plant diseases</topic><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, Pranesh</creatorcontrib><creatorcontrib>Karwande, Atharva</creatorcontrib><creatorcontrib>Kolhe, Tejas</creatorcontrib><creatorcontrib>Kamble, Soham</creatorcontrib><creatorcontrib>Joshi, Akshay</creatorcontrib><creatorcontrib>Wyawahare, Medha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulkarni, Pranesh</au><au>Karwande, Atharva</au><au>Kolhe, Tejas</au><au>Kamble, Soham</au><au>Joshi, Akshay</au><au>Wyawahare, Medha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Plant Disease Detection Using Image Processing and Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2021-11-22</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>One of the important and tedious task in agricultural practices is the detection of the disease on crops. It requires huge time as well as skilled labor. This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques. The proposed system is able to detect 20 different diseases of 5 common plants with 93% accuracy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2543902108
source Free E- Journals
subjects Agricultural practices
Computer vision
Crop diseases
Image processing
Machine learning
Plant diseases
title Plant Disease Detection Using Image Processing and Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Plant%20Disease%20Detection%20Using%20Image%20Processing%20and%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Kulkarni,%20Pranesh&rft.date=2021-11-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2543902108%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543902108&rft_id=info:pmid/&rfr_iscdi=true