Plant Disease Detection Using Image Processing and Machine Learning
One of the important and tedious task in agricultural practices is the detection of the disease on crops. It requires huge time as well as skilled labor. This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques. The...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kulkarni, Pranesh Karwande, Atharva Kolhe, Tejas Kamble, Soham Joshi, Akshay Wyawahare, Medha |
description | One of the important and tedious task in agricultural practices is the detection of the disease on crops. It requires huge time as well as skilled labor. This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques. The proposed system is able to detect 20 different diseases of 5 common plants with 93% accuracy. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2543902108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543902108</sourcerecordid><originalsourceid>FETCH-proquest_journals_25439021083</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPBciJtW67lVFBR60HMJda0pNdFs-n-L-ABPAzMzEREqtUryFHEmYuZOSonrDWaZikRR9doGKA2TZoKSAjXBOAtXNraF41O3BJV3DfFXaHuDs24exhKcSHs7yoWY3nXPFP84F8v97lIckpd374E41J0bvB1TjVmqthJXMlf_XR-szTmG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543902108</pqid></control><display><type>article</type><title>Plant Disease Detection Using Image Processing and Machine Learning</title><source>Free E- Journals</source><creator>Kulkarni, Pranesh ; Karwande, Atharva ; Kolhe, Tejas ; Kamble, Soham ; Joshi, Akshay ; Wyawahare, Medha</creator><creatorcontrib>Kulkarni, Pranesh ; Karwande, Atharva ; Kolhe, Tejas ; Kamble, Soham ; Joshi, Akshay ; Wyawahare, Medha</creatorcontrib><description>One of the important and tedious task in agricultural practices is the detection of the disease on crops. It requires huge time as well as skilled labor. This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques. The proposed system is able to detect 20 different diseases of 5 common plants with 93% accuracy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Agricultural practices ; Computer vision ; Crop diseases ; Image processing ; Machine learning ; Plant diseases</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kulkarni, Pranesh</creatorcontrib><creatorcontrib>Karwande, Atharva</creatorcontrib><creatorcontrib>Kolhe, Tejas</creatorcontrib><creatorcontrib>Kamble, Soham</creatorcontrib><creatorcontrib>Joshi, Akshay</creatorcontrib><creatorcontrib>Wyawahare, Medha</creatorcontrib><title>Plant Disease Detection Using Image Processing and Machine Learning</title><title>arXiv.org</title><description>One of the important and tedious task in agricultural practices is the detection of the disease on crops. It requires huge time as well as skilled labor. This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques. The proposed system is able to detect 20 different diseases of 5 common plants with 93% accuracy.</description><subject>Agricultural practices</subject><subject>Computer vision</subject><subject>Crop diseases</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Plant diseases</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPBciJtW67lVFBR60HMJda0pNdFs-n-L-ABPAzMzEREqtUryFHEmYuZOSonrDWaZikRR9doGKA2TZoKSAjXBOAtXNraF41O3BJV3DfFXaHuDs24exhKcSHs7yoWY3nXPFP84F8v97lIckpd374E41J0bvB1TjVmqthJXMlf_XR-szTmG</recordid><startdate>20211122</startdate><enddate>20211122</enddate><creator>Kulkarni, Pranesh</creator><creator>Karwande, Atharva</creator><creator>Kolhe, Tejas</creator><creator>Kamble, Soham</creator><creator>Joshi, Akshay</creator><creator>Wyawahare, Medha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211122</creationdate><title>Plant Disease Detection Using Image Processing and Machine Learning</title><author>Kulkarni, Pranesh ; Karwande, Atharva ; Kolhe, Tejas ; Kamble, Soham ; Joshi, Akshay ; Wyawahare, Medha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25439021083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural practices</topic><topic>Computer vision</topic><topic>Crop diseases</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Plant diseases</topic><toplevel>online_resources</toplevel><creatorcontrib>Kulkarni, Pranesh</creatorcontrib><creatorcontrib>Karwande, Atharva</creatorcontrib><creatorcontrib>Kolhe, Tejas</creatorcontrib><creatorcontrib>Kamble, Soham</creatorcontrib><creatorcontrib>Joshi, Akshay</creatorcontrib><creatorcontrib>Wyawahare, Medha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulkarni, Pranesh</au><au>Karwande, Atharva</au><au>Kolhe, Tejas</au><au>Kamble, Soham</au><au>Joshi, Akshay</au><au>Wyawahare, Medha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Plant Disease Detection Using Image Processing and Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2021-11-22</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>One of the important and tedious task in agricultural practices is the detection of the disease on crops. It requires huge time as well as skilled labor. This paper proposes a smart and efficient technique for detection of crop disease which uses computer vision and machine learning techniques. The proposed system is able to detect 20 different diseases of 5 common plants with 93% accuracy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2543902108 |
source | Free E- Journals |
subjects | Agricultural practices Computer vision Crop diseases Image processing Machine learning Plant diseases |
title | Plant Disease Detection Using Image Processing and Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Plant%20Disease%20Detection%20Using%20Image%20Processing%20and%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Kulkarni,%20Pranesh&rft.date=2021-11-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2543902108%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543902108&rft_id=info:pmid/&rfr_iscdi=true |