Indium phosphide nanowires: Synthesis and integration into a gas sensing device

Highlights •Successful synthesis of indium phosphide nnanowires with a diameter of 87 nm and relatively narrow size distribution.•Phase purity of the indium nanowires was important to ensure best possible performance and this was achieved.•Interaction between different analyte gases and the surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2021-04, Vol.333, p.129552, Article 129552
Hauptverfasser: Nyembe, Sanele, Ntho, Thabang, Ndlovu, Gebhu, Shumbula, Poslet, Moloto, Nosipho, Mwakikunga, Bonex, Sikhwivhilu, Lucky
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 129552
container_title Sensors and actuators. B, Chemical
container_volume 333
creator Nyembe, Sanele
Ntho, Thabang
Ndlovu, Gebhu
Shumbula, Poslet
Moloto, Nosipho
Mwakikunga, Bonex
Sikhwivhilu, Lucky
description Highlights •Successful synthesis of indium phosphide nnanowires with a diameter of 87 nm and relatively narrow size distribution.•Phase purity of the indium nanowires was important to ensure best possible performance and this was achieved.•Interaction between different analyte gases and the surface binding sites of indium phosphide nanowires were successfully investigated using Temperature-Programmed Desorption (TPD) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).•Methane gas (CH4) was found to physically adsorb on the surface of indium nanowires through weak van der Waals interaction while on the other hand electron transfer between the CO and indium phosphide nanowires led to a chemical bond formation.•Carbon monoxide showed the fastest response time of 27 s at 250 °C and this was the quickest of all the analyte gases tested. [Display omitted] Indium phosphide nanowires (InPNWs) with an average diameter of 87 nm were successfully synthesised through thermal chemical vapour deposition (CVD) method. The smooth surface nanowires showed a relatively narrow size distribution of 70–105 nm. Temperature programmed desorption (TPD) was used to study the thermodynamic behaviour of gas desorption. The study revealed that gaseous CO and CH4 molecules bind to InPNW surface through chemical and physical adsorption, respectively. The Redhead method was used to estimate the enthalpy energy of desorption for CO and CH4 to be 142 kJ/mol and 38 kJ/mol. The sorption temperature ranges were found to be 220–260 ̊C for CO and -50 to -20 ̊C for CH4. InPNWs were used to fabricate a gas sensor electronic device and were tested for performance. The device showed a quick response time of 29.19 s for CO at 250 ̊C, thus relatively faster than that of H2 and NO2.
doi_str_mv 10.1016/j.snb.2021.129552
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2543821042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400521001209</els_id><sourcerecordid>2543821042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-638b7a70c5f76dd52b19d5274c0725d5903a2970966181ffbba001ebeb9c8b2b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gsMSecnThOYEIVH5UqdQBmy19pHVE72GlR_z2pwsxyd8P73J0ehG4J5ARIdd_lyaucAiU5oQ1j9AzNSM2LrADOz9EMGsqyEoBdoquUOgAoiwpmaL30xu13uN-G1G-dsdhLH35ctOkBvx_9sLXJJSy9wc4PdhPl4II_zQFLvJEJJ-uT8xts7MFpe40uWvmV7M1fn6PPl-ePxVu2Wr8uF0-rTBeUDVlV1IpLDpq1vDKGUUWasfJSA6fMsAYKSRsOTVWRmrStUhKAWGVVo2tFVTFHd9PePobvvU2D6MI--vGkoKwsakqgpGOKTCkdQ0rRtqKPbifjURAQJ2-iE6M3cfImJm8j8zgxdnz_4GwUSTvrtTWjFD0IE9w_9C-zp3U5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543821042</pqid></control><display><type>article</type><title>Indium phosphide nanowires: Synthesis and integration into a gas sensing device</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nyembe, Sanele ; Ntho, Thabang ; Ndlovu, Gebhu ; Shumbula, Poslet ; Moloto, Nosipho ; Mwakikunga, Bonex ; Sikhwivhilu, Lucky</creator><creatorcontrib>Nyembe, Sanele ; Ntho, Thabang ; Ndlovu, Gebhu ; Shumbula, Poslet ; Moloto, Nosipho ; Mwakikunga, Bonex ; Sikhwivhilu, Lucky</creatorcontrib><description>Highlights •Successful synthesis of indium phosphide nnanowires with a diameter of 87 nm and relatively narrow size distribution.•Phase purity of the indium nanowires was important to ensure best possible performance and this was achieved.•Interaction between different analyte gases and the surface binding sites of indium phosphide nanowires were successfully investigated using Temperature-Programmed Desorption (TPD) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).•Methane gas (CH4) was found to physically adsorb on the surface of indium nanowires through weak van der Waals interaction while on the other hand electron transfer between the CO and indium phosphide nanowires led to a chemical bond formation.•Carbon monoxide showed the fastest response time of 27 s at 250 °C and this was the quickest of all the analyte gases tested. [Display omitted] Indium phosphide nanowires (InPNWs) with an average diameter of 87 nm were successfully synthesised through thermal chemical vapour deposition (CVD) method. The smooth surface nanowires showed a relatively narrow size distribution of 70–105 nm. Temperature programmed desorption (TPD) was used to study the thermodynamic behaviour of gas desorption. The study revealed that gaseous CO and CH4 molecules bind to InPNW surface through chemical and physical adsorption, respectively. The Redhead method was used to estimate the enthalpy energy of desorption for CO and CH4 to be 142 kJ/mol and 38 kJ/mol. The sorption temperature ranges were found to be 220–260 ̊C for CO and -50 to -20 ̊C for CH4. InPNWs were used to fabricate a gas sensor electronic device and were tested for performance. The device showed a quick response time of 29.19 s for CO at 250 ̊C, thus relatively faster than that of H2 and NO2.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2021.129552</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Analyte gas ; Carbon monoxide ; Chemical synthesis ; Chemical vapor deposition ; Chemical vapour deposition ; Desorption ; Diffuse Reflectance Infrared Fourier Transform Spectroscopy ; Enthalpy ; Enthalpy energy ; Gas sensing ; Gas sensors ; Methane ; Nanowires ; Nitrogen dioxide ; Phosphides ; Response time ; Size distribution ; Temperature programmed desorption ; Thermodynamic properties</subject><ispartof>Sensors and actuators. B, Chemical, 2021-04, Vol.333, p.129552, Article 129552</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-638b7a70c5f76dd52b19d5274c0725d5903a2970966181ffbba001ebeb9c8b2b3</citedby><cites>FETCH-LOGICAL-c325t-638b7a70c5f76dd52b19d5274c0725d5903a2970966181ffbba001ebeb9c8b2b3</cites><orcidid>0000-0001-6983-2671 ; 0000-0002-2848-0806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2021.129552$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nyembe, Sanele</creatorcontrib><creatorcontrib>Ntho, Thabang</creatorcontrib><creatorcontrib>Ndlovu, Gebhu</creatorcontrib><creatorcontrib>Shumbula, Poslet</creatorcontrib><creatorcontrib>Moloto, Nosipho</creatorcontrib><creatorcontrib>Mwakikunga, Bonex</creatorcontrib><creatorcontrib>Sikhwivhilu, Lucky</creatorcontrib><title>Indium phosphide nanowires: Synthesis and integration into a gas sensing device</title><title>Sensors and actuators. B, Chemical</title><description>Highlights •Successful synthesis of indium phosphide nnanowires with a diameter of 87 nm and relatively narrow size distribution.•Phase purity of the indium nanowires was important to ensure best possible performance and this was achieved.•Interaction between different analyte gases and the surface binding sites of indium phosphide nanowires were successfully investigated using Temperature-Programmed Desorption (TPD) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).•Methane gas (CH4) was found to physically adsorb on the surface of indium nanowires through weak van der Waals interaction while on the other hand electron transfer between the CO and indium phosphide nanowires led to a chemical bond formation.•Carbon monoxide showed the fastest response time of 27 s at 250 °C and this was the quickest of all the analyte gases tested. [Display omitted] Indium phosphide nanowires (InPNWs) with an average diameter of 87 nm were successfully synthesised through thermal chemical vapour deposition (CVD) method. The smooth surface nanowires showed a relatively narrow size distribution of 70–105 nm. Temperature programmed desorption (TPD) was used to study the thermodynamic behaviour of gas desorption. The study revealed that gaseous CO and CH4 molecules bind to InPNW surface through chemical and physical adsorption, respectively. The Redhead method was used to estimate the enthalpy energy of desorption for CO and CH4 to be 142 kJ/mol and 38 kJ/mol. The sorption temperature ranges were found to be 220–260 ̊C for CO and -50 to -20 ̊C for CH4. InPNWs were used to fabricate a gas sensor electronic device and were tested for performance. The device showed a quick response time of 29.19 s for CO at 250 ̊C, thus relatively faster than that of H2 and NO2.</description><subject>Analyte gas</subject><subject>Carbon monoxide</subject><subject>Chemical synthesis</subject><subject>Chemical vapor deposition</subject><subject>Chemical vapour deposition</subject><subject>Desorption</subject><subject>Diffuse Reflectance Infrared Fourier Transform Spectroscopy</subject><subject>Enthalpy</subject><subject>Enthalpy energy</subject><subject>Gas sensing</subject><subject>Gas sensors</subject><subject>Methane</subject><subject>Nanowires</subject><subject>Nitrogen dioxide</subject><subject>Phosphides</subject><subject>Response time</subject><subject>Size distribution</subject><subject>Temperature programmed desorption</subject><subject>Thermodynamic properties</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gsMSecnThOYEIVH5UqdQBmy19pHVE72GlR_z2pwsxyd8P73J0ehG4J5ARIdd_lyaucAiU5oQ1j9AzNSM2LrADOz9EMGsqyEoBdoquUOgAoiwpmaL30xu13uN-G1G-dsdhLH35ctOkBvx_9sLXJJSy9wc4PdhPl4II_zQFLvJEJJ-uT8xts7MFpe40uWvmV7M1fn6PPl-ePxVu2Wr8uF0-rTBeUDVlV1IpLDpq1vDKGUUWasfJSA6fMsAYKSRsOTVWRmrStUhKAWGVVo2tFVTFHd9PePobvvU2D6MI--vGkoKwsakqgpGOKTCkdQ0rRtqKPbifjURAQJ2-iE6M3cfImJm8j8zgxdnz_4GwUSTvrtTWjFD0IE9w_9C-zp3U5</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Nyembe, Sanele</creator><creator>Ntho, Thabang</creator><creator>Ndlovu, Gebhu</creator><creator>Shumbula, Poslet</creator><creator>Moloto, Nosipho</creator><creator>Mwakikunga, Bonex</creator><creator>Sikhwivhilu, Lucky</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6983-2671</orcidid><orcidid>https://orcid.org/0000-0002-2848-0806</orcidid></search><sort><creationdate>20210415</creationdate><title>Indium phosphide nanowires: Synthesis and integration into a gas sensing device</title><author>Nyembe, Sanele ; Ntho, Thabang ; Ndlovu, Gebhu ; Shumbula, Poslet ; Moloto, Nosipho ; Mwakikunga, Bonex ; Sikhwivhilu, Lucky</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-638b7a70c5f76dd52b19d5274c0725d5903a2970966181ffbba001ebeb9c8b2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analyte gas</topic><topic>Carbon monoxide</topic><topic>Chemical synthesis</topic><topic>Chemical vapor deposition</topic><topic>Chemical vapour deposition</topic><topic>Desorption</topic><topic>Diffuse Reflectance Infrared Fourier Transform Spectroscopy</topic><topic>Enthalpy</topic><topic>Enthalpy energy</topic><topic>Gas sensing</topic><topic>Gas sensors</topic><topic>Methane</topic><topic>Nanowires</topic><topic>Nitrogen dioxide</topic><topic>Phosphides</topic><topic>Response time</topic><topic>Size distribution</topic><topic>Temperature programmed desorption</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nyembe, Sanele</creatorcontrib><creatorcontrib>Ntho, Thabang</creatorcontrib><creatorcontrib>Ndlovu, Gebhu</creatorcontrib><creatorcontrib>Shumbula, Poslet</creatorcontrib><creatorcontrib>Moloto, Nosipho</creatorcontrib><creatorcontrib>Mwakikunga, Bonex</creatorcontrib><creatorcontrib>Sikhwivhilu, Lucky</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nyembe, Sanele</au><au>Ntho, Thabang</au><au>Ndlovu, Gebhu</au><au>Shumbula, Poslet</au><au>Moloto, Nosipho</au><au>Mwakikunga, Bonex</au><au>Sikhwivhilu, Lucky</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indium phosphide nanowires: Synthesis and integration into a gas sensing device</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2021-04-15</date><risdate>2021</risdate><volume>333</volume><spage>129552</spage><pages>129552-</pages><artnum>129552</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>Highlights •Successful synthesis of indium phosphide nnanowires with a diameter of 87 nm and relatively narrow size distribution.•Phase purity of the indium nanowires was important to ensure best possible performance and this was achieved.•Interaction between different analyte gases and the surface binding sites of indium phosphide nanowires were successfully investigated using Temperature-Programmed Desorption (TPD) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS).•Methane gas (CH4) was found to physically adsorb on the surface of indium nanowires through weak van der Waals interaction while on the other hand electron transfer between the CO and indium phosphide nanowires led to a chemical bond formation.•Carbon monoxide showed the fastest response time of 27 s at 250 °C and this was the quickest of all the analyte gases tested. [Display omitted] Indium phosphide nanowires (InPNWs) with an average diameter of 87 nm were successfully synthesised through thermal chemical vapour deposition (CVD) method. The smooth surface nanowires showed a relatively narrow size distribution of 70–105 nm. Temperature programmed desorption (TPD) was used to study the thermodynamic behaviour of gas desorption. The study revealed that gaseous CO and CH4 molecules bind to InPNW surface through chemical and physical adsorption, respectively. The Redhead method was used to estimate the enthalpy energy of desorption for CO and CH4 to be 142 kJ/mol and 38 kJ/mol. The sorption temperature ranges were found to be 220–260 ̊C for CO and -50 to -20 ̊C for CH4. InPNWs were used to fabricate a gas sensor electronic device and were tested for performance. The device showed a quick response time of 29.19 s for CO at 250 ̊C, thus relatively faster than that of H2 and NO2.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2021.129552</doi><orcidid>https://orcid.org/0000-0001-6983-2671</orcidid><orcidid>https://orcid.org/0000-0002-2848-0806</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2021-04, Vol.333, p.129552, Article 129552
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2543821042
source Access via ScienceDirect (Elsevier)
subjects Analyte gas
Carbon monoxide
Chemical synthesis
Chemical vapor deposition
Chemical vapour deposition
Desorption
Diffuse Reflectance Infrared Fourier Transform Spectroscopy
Enthalpy
Enthalpy energy
Gas sensing
Gas sensors
Methane
Nanowires
Nitrogen dioxide
Phosphides
Response time
Size distribution
Temperature programmed desorption
Thermodynamic properties
title Indium phosphide nanowires: Synthesis and integration into a gas sensing device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indium%20phosphide%20nanowires:%20Synthesis%20and%20integration%20into%20a%20gas%20sensing%20device&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Nyembe,%20Sanele&rft.date=2021-04-15&rft.volume=333&rft.spage=129552&rft.pages=129552-&rft.artnum=129552&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2021.129552&rft_dat=%3Cproquest_cross%3E2543821042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543821042&rft_id=info:pmid/&rft_els_id=S0925400521001209&rfr_iscdi=true