Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network

Sinus floor elevation with a lateral window approach requires bone graft (BG) to ensure sufficient bone mass, and it is necessary to measure and analyse the BG region for follow-up of postoperative patients. However, the BG region from cone-beam computed tomography (CBCT) images is connected to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shanghai jiao tong da xue xue bao 2021-06, Vol.26 (3), p.298-305
Hauptverfasser: Xu, Jiangchang, He, Shamin, Yu, Dedong, Wu, Yiqun, Chen, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 3
container_start_page 298
container_title Shanghai jiao tong da xue xue bao
container_volume 26
creator Xu, Jiangchang
He, Shamin
Yu, Dedong
Wu, Yiqun
Chen, Xiaojun
description Sinus floor elevation with a lateral window approach requires bone graft (BG) to ensure sufficient bone mass, and it is necessary to measure and analyse the BG region for follow-up of postoperative patients. However, the BG region from cone-beam computed tomography (CBCT) images is connected to the margin of the maxillary sinus, and its boundary is blurred. Common segmentation methods are usually performed manually by experienced doctors, and are complicated by challenges such as low efficiency and low precision. In this study, an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution (ASPC) network. The ASPC module was adopted using residual connections to compose multiple atrous convolutions, which could extract more features on multiple scales. Subsequently, a segmentation network of the BG region with multiple ASPC modules was established, which effectively improved the segmentation performance. Although the training data were insufficient, our networks still achieved good auto-segmentation results, with a dice coefficient (Dice) of 87.13%, an Intersection over Union (Iou) of 78.01%, and a sensitivity of 95.02%. Compared with other methods, our method achieved a better segmentation effect, and effectively reduced the misjudgement of segmentation. Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’ work efficiency, which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus.
doi_str_mv 10.1007/s12204-021-2296-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2543815646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2539268808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2592-ab16c21c52a957f1325322fd6d077c4b70bd74514fcafee81e0a64ae7babc65c3</originalsourceid><addsrcrecordid>eNp9kc1O3DAUhaOqSKXAA3RnibVb-ybOz3JmRCkSpYiBteU415nQJA62A52H6jvWYZC6ale-sr9zzpVPknzi7DNnrPjiOQDLKANOAaqcwrvkmFeVoCUvy_dxjhDlvIAPyUfvHxnLWJpWx8nv1RzsoEKnyRbbAccQZzuS7xh2tiHGOrKxI9I1qiFOwzQHbMi9HWzr1LTbk6tBtUisIWGHZB1RcumUCeQO28XnpQu7LtqpX13fK7cn226cPVkrH23i-6JaBWfj3XaK0aont3unhq5Zcp9tP7-uc4Phxbqfp8mRUb3Hs7fzJHn4enG_-Uavf1xebVbXVIOogKqa5xq4FqAqURiegkgBTJM3rCh0VhesbopM8MxoZRBLjkzlmcKiVrXOhU5PkvOD7-Ts04w-yEc7uzFGShBZWnKRZ_n_qbSCvCxZGSl-oLSz3js0cnLdEL9CciaXWuShOxm7k0t3EqIGDhof2bFF99f536I_85-eQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539268808</pqid></control><display><type>article</type><title>Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><creator>Xu, Jiangchang ; He, Shamin ; Yu, Dedong ; Wu, Yiqun ; Chen, Xiaojun</creator><creatorcontrib>Xu, Jiangchang ; He, Shamin ; Yu, Dedong ; Wu, Yiqun ; Chen, Xiaojun</creatorcontrib><description>Sinus floor elevation with a lateral window approach requires bone graft (BG) to ensure sufficient bone mass, and it is necessary to measure and analyse the BG region for follow-up of postoperative patients. However, the BG region from cone-beam computed tomography (CBCT) images is connected to the margin of the maxillary sinus, and its boundary is blurred. Common segmentation methods are usually performed manually by experienced doctors, and are complicated by challenges such as low efficiency and low precision. In this study, an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution (ASPC) network. The ASPC module was adopted using residual connections to compose multiple atrous convolutions, which could extract more features on multiple scales. Subsequently, a segmentation network of the BG region with multiple ASPC modules was established, which effectively improved the segmentation performance. Although the training data were insufficient, our networks still achieved good auto-segmentation results, with a dice coefficient (Dice) of 87.13%, an Intersection over Union (Iou) of 78.01%, and a sensitivity of 95.02%. Compared with other methods, our method achieved a better segmentation effect, and effectively reduced the misjudgement of segmentation. Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’ work efficiency, which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus.</description><identifier>ISSN: 1007-1172</identifier><identifier>ISSN: 1674-8115</identifier><identifier>EISSN: 1995-8188</identifier><identifier>DOI: 10.1007/s12204-021-2296-2</identifier><language>eng</language><publisher>Shanghai: Shanghai Jiaotong University Press</publisher><subject>Architecture ; Bone grafts ; Bone mass ; Computed tomography ; Computer Science ; Convolution ; Electrical Engineering ; Engineering ; Feature extraction ; Grafting ; Grafts ; Image processing ; Image segmentation ; Life Sciences ; Materials Science ; Maxillary sinus ; Medical imaging ; Modules ; Physicians ; Sinuses ; Skin &amp; tissue grafts ; Substitute bone</subject><ispartof>Shanghai jiao tong da xue xue bao, 2021-06, Vol.26 (3), p.298-305</ispartof><rights>Shanghai Jiao Tong University and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Shanghai Jiao Tong University and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><rights>Copyright Shanghai Jiaotong University Press Jun 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2592-ab16c21c52a957f1325322fd6d077c4b70bd74514fcafee81e0a64ae7babc65c3</citedby><cites>FETCH-LOGICAL-c2592-ab16c21c52a957f1325322fd6d077c4b70bd74514fcafee81e0a64ae7babc65c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12204-021-2296-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12204-021-2296-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,865,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Xu, Jiangchang</creatorcontrib><creatorcontrib>He, Shamin</creatorcontrib><creatorcontrib>Yu, Dedong</creatorcontrib><creatorcontrib>Wu, Yiqun</creatorcontrib><creatorcontrib>Chen, Xiaojun</creatorcontrib><title>Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network</title><title>Shanghai jiao tong da xue xue bao</title><addtitle>J. Shanghai Jiaotong Univ. (Sci.)</addtitle><description>Sinus floor elevation with a lateral window approach requires bone graft (BG) to ensure sufficient bone mass, and it is necessary to measure and analyse the BG region for follow-up of postoperative patients. However, the BG region from cone-beam computed tomography (CBCT) images is connected to the margin of the maxillary sinus, and its boundary is blurred. Common segmentation methods are usually performed manually by experienced doctors, and are complicated by challenges such as low efficiency and low precision. In this study, an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution (ASPC) network. The ASPC module was adopted using residual connections to compose multiple atrous convolutions, which could extract more features on multiple scales. Subsequently, a segmentation network of the BG region with multiple ASPC modules was established, which effectively improved the segmentation performance. Although the training data were insufficient, our networks still achieved good auto-segmentation results, with a dice coefficient (Dice) of 87.13%, an Intersection over Union (Iou) of 78.01%, and a sensitivity of 95.02%. Compared with other methods, our method achieved a better segmentation effect, and effectively reduced the misjudgement of segmentation. Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’ work efficiency, which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus.</description><subject>Architecture</subject><subject>Bone grafts</subject><subject>Bone mass</subject><subject>Computed tomography</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Maxillary sinus</subject><subject>Medical imaging</subject><subject>Modules</subject><subject>Physicians</subject><subject>Sinuses</subject><subject>Skin &amp; tissue grafts</subject><subject>Substitute bone</subject><issn>1007-1172</issn><issn>1674-8115</issn><issn>1995-8188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3DAUhaOqSKXAA3RnibVb-ybOz3JmRCkSpYiBteU415nQJA62A52H6jvWYZC6ale-sr9zzpVPknzi7DNnrPjiOQDLKANOAaqcwrvkmFeVoCUvy_dxjhDlvIAPyUfvHxnLWJpWx8nv1RzsoEKnyRbbAccQZzuS7xh2tiHGOrKxI9I1qiFOwzQHbMi9HWzr1LTbk6tBtUisIWGHZB1RcumUCeQO28XnpQu7LtqpX13fK7cn226cPVkrH23i-6JaBWfj3XaK0aont3unhq5Zcp9tP7-uc4Phxbqfp8mRUb3Hs7fzJHn4enG_-Uavf1xebVbXVIOogKqa5xq4FqAqURiegkgBTJM3rCh0VhesbopM8MxoZRBLjkzlmcKiVrXOhU5PkvOD7-Ts04w-yEc7uzFGShBZWnKRZ_n_qbSCvCxZGSl-oLSz3js0cnLdEL9CciaXWuShOxm7k0t3EqIGDhof2bFF99f536I_85-eQg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Xu, Jiangchang</creator><creator>He, Shamin</creator><creator>Yu, Dedong</creator><creator>Wu, Yiqun</creator><creator>Chen, Xiaojun</creator><general>Shanghai Jiaotong University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20210601</creationdate><title>Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network</title><author>Xu, Jiangchang ; He, Shamin ; Yu, Dedong ; Wu, Yiqun ; Chen, Xiaojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2592-ab16c21c52a957f1325322fd6d077c4b70bd74514fcafee81e0a64ae7babc65c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Architecture</topic><topic>Bone grafts</topic><topic>Bone mass</topic><topic>Computed tomography</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Maxillary sinus</topic><topic>Medical imaging</topic><topic>Modules</topic><topic>Physicians</topic><topic>Sinuses</topic><topic>Skin &amp; tissue grafts</topic><topic>Substitute bone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiangchang</creatorcontrib><creatorcontrib>He, Shamin</creatorcontrib><creatorcontrib>Yu, Dedong</creatorcontrib><creatorcontrib>Wu, Yiqun</creatorcontrib><creatorcontrib>Chen, Xiaojun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Shanghai jiao tong da xue xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiangchang</au><au>He, Shamin</au><au>Yu, Dedong</au><au>Wu, Yiqun</au><au>Chen, Xiaojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network</atitle><jtitle>Shanghai jiao tong da xue xue bao</jtitle><stitle>J. Shanghai Jiaotong Univ. (Sci.)</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>26</volume><issue>3</issue><spage>298</spage><epage>305</epage><pages>298-305</pages><issn>1007-1172</issn><issn>1674-8115</issn><eissn>1995-8188</eissn><abstract>Sinus floor elevation with a lateral window approach requires bone graft (BG) to ensure sufficient bone mass, and it is necessary to measure and analyse the BG region for follow-up of postoperative patients. However, the BG region from cone-beam computed tomography (CBCT) images is connected to the margin of the maxillary sinus, and its boundary is blurred. Common segmentation methods are usually performed manually by experienced doctors, and are complicated by challenges such as low efficiency and low precision. In this study, an auto-segmentation approach was applied to the BG region within the maxillary sinus based on an atrous spatial pyramid convolution (ASPC) network. The ASPC module was adopted using residual connections to compose multiple atrous convolutions, which could extract more features on multiple scales. Subsequently, a segmentation network of the BG region with multiple ASPC modules was established, which effectively improved the segmentation performance. Although the training data were insufficient, our networks still achieved good auto-segmentation results, with a dice coefficient (Dice) of 87.13%, an Intersection over Union (Iou) of 78.01%, and a sensitivity of 95.02%. Compared with other methods, our method achieved a better segmentation effect, and effectively reduced the misjudgement of segmentation. Our method can thus be used to implement automatic segmentation of the BG region and improve doctors’ work efficiency, which is of great importance for developing preliminary studies on the measurement of postoperative BG within the maxillary sinus.</abstract><cop>Shanghai</cop><pub>Shanghai Jiaotong University Press</pub><doi>10.1007/s12204-021-2296-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-1172
ispartof Shanghai jiao tong da xue xue bao, 2021-06, Vol.26 (3), p.298-305
issn 1007-1172
1674-8115
1995-8188
language eng
recordid cdi_proquest_journals_2543815646
source DOAJ Directory of Open Access Journals; SpringerNature Journals
subjects Architecture
Bone grafts
Bone mass
Computed tomography
Computer Science
Convolution
Electrical Engineering
Engineering
Feature extraction
Grafting
Grafts
Image processing
Image segmentation
Life Sciences
Materials Science
Maxillary sinus
Medical imaging
Modules
Physicians
Sinuses
Skin & tissue grafts
Substitute bone
title Automatic Segmentation Method for Cone-Beam Computed Tomography Image of the Bone Graft Region within Maxillary Sinus Based on the Atrous Spatial Pyramid Convolution Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Segmentation%20Method%20for%20Cone-Beam%20Computed%20Tomography%20Image%20of%20the%20Bone%20Graft%20Region%20within%20Maxillary%20Sinus%20Based%20on%20the%20Atrous%20Spatial%20Pyramid%20Convolution%20Network&rft.jtitle=Shanghai%20jiao%20tong%20da%20xue%20xue%20bao&rft.au=Xu,%20Jiangchang&rft.date=2021-06-01&rft.volume=26&rft.issue=3&rft.spage=298&rft.epage=305&rft.pages=298-305&rft.issn=1007-1172&rft.eissn=1995-8188&rft_id=info:doi/10.1007/s12204-021-2296-2&rft_dat=%3Cproquest_cross%3E2539268808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539268808&rft_id=info:pmid/&rfr_iscdi=true