The KF-SVM-based fusion method for multi sensor uncertain system with correlated noise

For multi-sensor target tracking system, the accurate state estimation is obtained under the condition that the system model is unbiased and the noise disturbance satisfies the characteristics of independent Gaussian white noise. However, in engineering practice, it is almost impossible to get the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2021-01, Vol.40 (6), p.10373-10383
Hauptverfasser: Jiao, Yuzhao, Lou, Taishan, Wang, Xiaolei, Zhao, Hongmei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10383
container_issue 6
container_start_page 10373
container_title Journal of intelligent & fuzzy systems
container_volume 40
creator Jiao, Yuzhao
Lou, Taishan
Wang, Xiaolei
Zhao, Hongmei
description For multi-sensor target tracking system, the accurate state estimation is obtained under the condition that the system model is unbiased and the noise disturbance satisfies the characteristics of independent Gaussian white noise. However, in engineering practice, it is almost impossible to get the accurate system model and also the system noise is non-independent Gaussian white noise. So the traditional state estimation methods are not suitable for uncertainty system with non Gaussian white noise. In this paper, the Kalman Filter-Support Vector Machine (KF-SVM) based data fusion algorithm is proposed for system with model uncertainty and correlated noise. Firstly, the state pre-estimates are calculated by the proposed improved Kalman Filter for single sensor system. Then, the state estimation is obtained via proposed KF-SVM data fusion algorithm for multi-sensor system. Finally, compared with the traditional algorithms, the simulation results show that the proposed fusion algorithm based on KF-SVM does not need to calculate the sensor cross-covariance matrix and has better estimation accuracy.
doi_str_mv 10.3233/JIFS-192116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2543806447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543806447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-5356886c1114b8b1937754330f2fee3399d99ee4ad64996716f8e5a2af325e303</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWB8r_0DApUTzmkyylGK1WnHR2m1Ipzd0SmdSkwzSf29KXd174NxzOR9Cd4w-Ci7E0_t0MifMcMbUGRoxXVdEG1Wfl50qSRiX6hJdpbSllNUVpyO0XGwAf0zIfPlJVi7BGvshtaHHHeRNKCpE3A273OIEfSpi6BuI2bU9ToeUocO_bd7gJsQIO5fLfR_aBDfowrtdgtv_eY2-Jy-L8RuZfb1Ox88z0nBmMqlEpbRWDWNMrvSKGVHXlRSCeu4BhDBmbQyAdGslTSnClNdQOe684BUIKq7R_Sl3H8PPACnbbRhiX15aXoJ0aS3r4no4uZoYUorg7T62nYsHy6g9grNHcPYETvwBQ6lfKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543806447</pqid></control><display><type>article</type><title>The KF-SVM-based fusion method for multi sensor uncertain system with correlated noise</title><source>Business Source Complete</source><creator>Jiao, Yuzhao ; Lou, Taishan ; Wang, Xiaolei ; Zhao, Hongmei</creator><creatorcontrib>Jiao, Yuzhao ; Lou, Taishan ; Wang, Xiaolei ; Zhao, Hongmei</creatorcontrib><description>For multi-sensor target tracking system, the accurate state estimation is obtained under the condition that the system model is unbiased and the noise disturbance satisfies the characteristics of independent Gaussian white noise. However, in engineering practice, it is almost impossible to get the accurate system model and also the system noise is non-independent Gaussian white noise. So the traditional state estimation methods are not suitable for uncertainty system with non Gaussian white noise. In this paper, the Kalman Filter-Support Vector Machine (KF-SVM) based data fusion algorithm is proposed for system with model uncertainty and correlated noise. Firstly, the state pre-estimates are calculated by the proposed improved Kalman Filter for single sensor system. Then, the state estimation is obtained via proposed KF-SVM data fusion algorithm for multi-sensor system. Finally, compared with the traditional algorithms, the simulation results show that the proposed fusion algorithm based on KF-SVM does not need to calculate the sensor cross-covariance matrix and has better estimation accuracy.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-192116</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Algorithms ; Covariance matrix ; Data integration ; Kalman filters ; Multisensor fusion ; Noise ; Sensors ; State estimation ; Support vector machines ; Tracking systems ; Uncertainty ; White noise</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2021-01, Vol.40 (6), p.10373-10383</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-5356886c1114b8b1937754330f2fee3399d99ee4ad64996716f8e5a2af325e303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiao, Yuzhao</creatorcontrib><creatorcontrib>Lou, Taishan</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Zhao, Hongmei</creatorcontrib><title>The KF-SVM-based fusion method for multi sensor uncertain system with correlated noise</title><title>Journal of intelligent &amp; fuzzy systems</title><description>For multi-sensor target tracking system, the accurate state estimation is obtained under the condition that the system model is unbiased and the noise disturbance satisfies the characteristics of independent Gaussian white noise. However, in engineering practice, it is almost impossible to get the accurate system model and also the system noise is non-independent Gaussian white noise. So the traditional state estimation methods are not suitable for uncertainty system with non Gaussian white noise. In this paper, the Kalman Filter-Support Vector Machine (KF-SVM) based data fusion algorithm is proposed for system with model uncertainty and correlated noise. Firstly, the state pre-estimates are calculated by the proposed improved Kalman Filter for single sensor system. Then, the state estimation is obtained via proposed KF-SVM data fusion algorithm for multi-sensor system. Finally, compared with the traditional algorithms, the simulation results show that the proposed fusion algorithm based on KF-SVM does not need to calculate the sensor cross-covariance matrix and has better estimation accuracy.</description><subject>Algorithms</subject><subject>Covariance matrix</subject><subject>Data integration</subject><subject>Kalman filters</subject><subject>Multisensor fusion</subject><subject>Noise</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Support vector machines</subject><subject>Tracking systems</subject><subject>Uncertainty</subject><subject>White noise</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkEtLAzEUhYMoWB8r_0DApUTzmkyylGK1WnHR2m1Ipzd0SmdSkwzSf29KXd174NxzOR9Cd4w-Ci7E0_t0MifMcMbUGRoxXVdEG1Wfl50qSRiX6hJdpbSllNUVpyO0XGwAf0zIfPlJVi7BGvshtaHHHeRNKCpE3A273OIEfSpi6BuI2bU9ToeUocO_bd7gJsQIO5fLfR_aBDfowrtdgtv_eY2-Jy-L8RuZfb1Ox88z0nBmMqlEpbRWDWNMrvSKGVHXlRSCeu4BhDBmbQyAdGslTSnClNdQOe684BUIKq7R_Sl3H8PPACnbbRhiX15aXoJ0aS3r4no4uZoYUorg7T62nYsHy6g9grNHcPYETvwBQ6lfKw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Jiao, Yuzhao</creator><creator>Lou, Taishan</creator><creator>Wang, Xiaolei</creator><creator>Zhao, Hongmei</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>The KF-SVM-based fusion method for multi sensor uncertain system with correlated noise</title><author>Jiao, Yuzhao ; Lou, Taishan ; Wang, Xiaolei ; Zhao, Hongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-5356886c1114b8b1937754330f2fee3399d99ee4ad64996716f8e5a2af325e303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Covariance matrix</topic><topic>Data integration</topic><topic>Kalman filters</topic><topic>Multisensor fusion</topic><topic>Noise</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Support vector machines</topic><topic>Tracking systems</topic><topic>Uncertainty</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Yuzhao</creatorcontrib><creatorcontrib>Lou, Taishan</creatorcontrib><creatorcontrib>Wang, Xiaolei</creatorcontrib><creatorcontrib>Zhao, Hongmei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Yuzhao</au><au>Lou, Taishan</au><au>Wang, Xiaolei</au><au>Zhao, Hongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The KF-SVM-based fusion method for multi sensor uncertain system with correlated noise</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>40</volume><issue>6</issue><spage>10373</spage><epage>10383</epage><pages>10373-10383</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>For multi-sensor target tracking system, the accurate state estimation is obtained under the condition that the system model is unbiased and the noise disturbance satisfies the characteristics of independent Gaussian white noise. However, in engineering practice, it is almost impossible to get the accurate system model and also the system noise is non-independent Gaussian white noise. So the traditional state estimation methods are not suitable for uncertainty system with non Gaussian white noise. In this paper, the Kalman Filter-Support Vector Machine (KF-SVM) based data fusion algorithm is proposed for system with model uncertainty and correlated noise. Firstly, the state pre-estimates are calculated by the proposed improved Kalman Filter for single sensor system. Then, the state estimation is obtained via proposed KF-SVM data fusion algorithm for multi-sensor system. Finally, compared with the traditional algorithms, the simulation results show that the proposed fusion algorithm based on KF-SVM does not need to calculate the sensor cross-covariance matrix and has better estimation accuracy.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-192116</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2021-01, Vol.40 (6), p.10373-10383
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2543806447
source Business Source Complete
subjects Algorithms
Covariance matrix
Data integration
Kalman filters
Multisensor fusion
Noise
Sensors
State estimation
Support vector machines
Tracking systems
Uncertainty
White noise
title The KF-SVM-based fusion method for multi sensor uncertain system with correlated noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20KF-SVM-based%20fusion%20method%20for%20multi%20sensor%20uncertain%20system%20with%20correlated%20noise&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Jiao,%20Yuzhao&rft.date=2021-01-01&rft.volume=40&rft.issue=6&rft.spage=10373&rft.epage=10383&rft.pages=10373-10383&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-192116&rft_dat=%3Cproquest_cross%3E2543806447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543806447&rft_id=info:pmid/&rfr_iscdi=true