Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter
The recent development of optical control of electron pulses brings new opportunities and methodologies in the fields of light–electron interaction and ultrafast electron diffraction (UED)/microscopy. Here, by a comprehensive theoretical study, we present a scheme to compress the longitudinal durati...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2021-06, Vol.23 (6), p.63052 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 63052 |
container_title | New journal of physics |
container_volume | 23 |
creator | Qi, Yingpeng Yang, Lele Yue, Luye Li, Jingjun Wang, Xuan Sun, Zhenrong Cao, Jianming |
description | The recent development of optical control of electron pulses brings new opportunities and methodologies in the fields of light–electron interaction and ultrafast electron diffraction (UED)/microscopy. Here, by a comprehensive theoretical study, we present a scheme to compress the longitudinal duration of low (⩽1 keV) to medium energy (1–70 keV) electron pulses by the electric field of a THz wave, together with a novel shot-by-shot jitter correction approach by using the magnetic field from the same wave. Our theoretical simulations suggest the compression of the electron pulse duration to a few femtoseconds and even sub-femtosecond. A comprehensive analysis based on typical UED patterns indicates a sub-femtosecond precision of the jitter correction approach. We stress that the energy independence of Coulomb interaction in the compression and the compact structure of THz device lay the foundation of the compression of low energy electron pulses. The combination of the THz compression of the electron pulse and the electron–THz jitter correction opens a way to improve the overall temporal resolution to attosecond for ultrafast electron probes with low to medium energies and high charge number per pulse, and therefore, it will boost the ultrafast detection of transient structural dynamics in surface science and atomically thin film systems. |
doi_str_mv | 10.1088/1367-2630/ac05e2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2543759254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4368de8154a347e6b2c7386af618e4d3</doaj_id><sourcerecordid>2543759254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-720d6378cb5eec45a610b7064db7c2066ada7dc868649eacafad23c95f8c5a143</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEEmXovstILNiQ1v_2LFEFtFIlNtO15bFvZhwlcbAdobLiDVjwhjxJnQYKC9TVta_P-e6VT1WdYXSOkVIXmArZEEHRhbGIA3lWnTy2nv9zflm9SqlDCGNFyEn1Y3eEECF7a_o65dl5SHVo63yEenf1rbZhmCKk5MO4tPvwtcmhGcD5eahhhHi4q6EHm2MRTHOfit2M7sGf_HjooUnHkAvaDFO5L5A_-l_ffy4jsh-Wh87nDPF19aI1hXL6u26q248fdpdXzc3nT9eX728ay5jKjSTICSqV3XMAy7gRGO0lEsztpSVICOOMdFYJJdgWjDWtcYTaLW-V5QYzuqmuV64LptNT9IOJdzoYrx8aIR60ieVXetCMCuVAYc4MZRLEnlhJlTCtwAqYo4X1ZmVNMXyZIWXdhTmOZX1NOKOSb5eyqdCqsjGkFKF9nIqRXiLUS0Z6yUivERbLu9Xiw_SX-YT87X_kYzdpQrXQqEg50ZNr6T2Hja1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543759254</pqid></control><display><type>article</type><title>Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Qi, Yingpeng ; Yang, Lele ; Yue, Luye ; Li, Jingjun ; Wang, Xuan ; Sun, Zhenrong ; Cao, Jianming</creator><creatorcontrib>Qi, Yingpeng ; Yang, Lele ; Yue, Luye ; Li, Jingjun ; Wang, Xuan ; Sun, Zhenrong ; Cao, Jianming</creatorcontrib><description>The recent development of optical control of electron pulses brings new opportunities and methodologies in the fields of light–electron interaction and ultrafast electron diffraction (UED)/microscopy. Here, by a comprehensive theoretical study, we present a scheme to compress the longitudinal duration of low (⩽1 keV) to medium energy (1–70 keV) electron pulses by the electric field of a THz wave, together with a novel shot-by-shot jitter correction approach by using the magnetic field from the same wave. Our theoretical simulations suggest the compression of the electron pulse duration to a few femtoseconds and even sub-femtosecond. A comprehensive analysis based on typical UED patterns indicates a sub-femtosecond precision of the jitter correction approach. We stress that the energy independence of Coulomb interaction in the compression and the compact structure of THz device lay the foundation of the compression of low energy electron pulses. The combination of the THz compression of the electron pulse and the electron–THz jitter correction opens a way to improve the overall temporal resolution to attosecond for ultrafast electron probes with low to medium energies and high charge number per pulse, and therefore, it will boost the ultrafast detection of transient structural dynamics in surface science and atomically thin film systems.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac05e2</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>attosecond temporal resolution ; Coulomb interaction ; Electric fields ; Electron diffraction ; Electron probes ; Electron pulses ; electron–THz timing jitter ; Energy ; Laboratories ; Longitudinal waves ; low energy electron diffraction ; Magnetic fields ; Microscopy ; Optical control ; Physics ; Pulse duration ; Temporal resolution ; Terahertz frequencies ; Thin films ; THz compression ; Timing jitter ; Vibration</subject><ispartof>New journal of physics, 2021-06, Vol.23 (6), p.63052</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-720d6378cb5eec45a610b7064db7c2066ada7dc868649eacafad23c95f8c5a143</citedby><cites>FETCH-LOGICAL-c448t-720d6378cb5eec45a610b7064db7c2066ada7dc868649eacafad23c95f8c5a143</cites><orcidid>0000-0001-5950-8157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ac05e2/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Qi, Yingpeng</creatorcontrib><creatorcontrib>Yang, Lele</creatorcontrib><creatorcontrib>Yue, Luye</creatorcontrib><creatorcontrib>Li, Jingjun</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Sun, Zhenrong</creatorcontrib><creatorcontrib>Cao, Jianming</creatorcontrib><title>Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>The recent development of optical control of electron pulses brings new opportunities and methodologies in the fields of light–electron interaction and ultrafast electron diffraction (UED)/microscopy. Here, by a comprehensive theoretical study, we present a scheme to compress the longitudinal duration of low (⩽1 keV) to medium energy (1–70 keV) electron pulses by the electric field of a THz wave, together with a novel shot-by-shot jitter correction approach by using the magnetic field from the same wave. Our theoretical simulations suggest the compression of the electron pulse duration to a few femtoseconds and even sub-femtosecond. A comprehensive analysis based on typical UED patterns indicates a sub-femtosecond precision of the jitter correction approach. We stress that the energy independence of Coulomb interaction in the compression and the compact structure of THz device lay the foundation of the compression of low energy electron pulses. The combination of the THz compression of the electron pulse and the electron–THz jitter correction opens a way to improve the overall temporal resolution to attosecond for ultrafast electron probes with low to medium energies and high charge number per pulse, and therefore, it will boost the ultrafast detection of transient structural dynamics in surface science and atomically thin film systems.</description><subject>attosecond temporal resolution</subject><subject>Coulomb interaction</subject><subject>Electric fields</subject><subject>Electron diffraction</subject><subject>Electron probes</subject><subject>Electron pulses</subject><subject>electron–THz timing jitter</subject><subject>Energy</subject><subject>Laboratories</subject><subject>Longitudinal waves</subject><subject>low energy electron diffraction</subject><subject>Magnetic fields</subject><subject>Microscopy</subject><subject>Optical control</subject><subject>Physics</subject><subject>Pulse duration</subject><subject>Temporal resolution</subject><subject>Terahertz frequencies</subject><subject>Thin films</subject><subject>THz compression</subject><subject>Timing jitter</subject><subject>Vibration</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAUhSMEEmXovstILNiQ1v_2LFEFtFIlNtO15bFvZhwlcbAdobLiDVjwhjxJnQYKC9TVta_P-e6VT1WdYXSOkVIXmArZEEHRhbGIA3lWnTy2nv9zflm9SqlDCGNFyEn1Y3eEECF7a_o65dl5SHVo63yEenf1rbZhmCKk5MO4tPvwtcmhGcD5eahhhHi4q6EHm2MRTHOfit2M7sGf_HjooUnHkAvaDFO5L5A_-l_ffy4jsh-Wh87nDPF19aI1hXL6u26q248fdpdXzc3nT9eX728ay5jKjSTICSqV3XMAy7gRGO0lEsztpSVICOOMdFYJJdgWjDWtcYTaLW-V5QYzuqmuV64LptNT9IOJdzoYrx8aIR60ieVXetCMCuVAYc4MZRLEnlhJlTCtwAqYo4X1ZmVNMXyZIWXdhTmOZX1NOKOSb5eyqdCqsjGkFKF9nIqRXiLUS0Z6yUivERbLu9Xiw_SX-YT87X_kYzdpQrXQqEg50ZNr6T2Hja1I</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Qi, Yingpeng</creator><creator>Yang, Lele</creator><creator>Yue, Luye</creator><creator>Li, Jingjun</creator><creator>Wang, Xuan</creator><creator>Sun, Zhenrong</creator><creator>Cao, Jianming</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5950-8157</orcidid></search><sort><creationdate>20210601</creationdate><title>Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter</title><author>Qi, Yingpeng ; Yang, Lele ; Yue, Luye ; Li, Jingjun ; Wang, Xuan ; Sun, Zhenrong ; Cao, Jianming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-720d6378cb5eec45a610b7064db7c2066ada7dc868649eacafad23c95f8c5a143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>attosecond temporal resolution</topic><topic>Coulomb interaction</topic><topic>Electric fields</topic><topic>Electron diffraction</topic><topic>Electron probes</topic><topic>Electron pulses</topic><topic>electron–THz timing jitter</topic><topic>Energy</topic><topic>Laboratories</topic><topic>Longitudinal waves</topic><topic>low energy electron diffraction</topic><topic>Magnetic fields</topic><topic>Microscopy</topic><topic>Optical control</topic><topic>Physics</topic><topic>Pulse duration</topic><topic>Temporal resolution</topic><topic>Terahertz frequencies</topic><topic>Thin films</topic><topic>THz compression</topic><topic>Timing jitter</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Yingpeng</creatorcontrib><creatorcontrib>Yang, Lele</creatorcontrib><creatorcontrib>Yue, Luye</creatorcontrib><creatorcontrib>Li, Jingjun</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Sun, Zhenrong</creatorcontrib><creatorcontrib>Cao, Jianming</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Yingpeng</au><au>Yang, Lele</au><au>Yue, Luye</au><au>Li, Jingjun</au><au>Wang, Xuan</au><au>Sun, Zhenrong</au><au>Cao, Jianming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>23</volume><issue>6</issue><spage>63052</spage><pages>63052-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The recent development of optical control of electron pulses brings new opportunities and methodologies in the fields of light–electron interaction and ultrafast electron diffraction (UED)/microscopy. Here, by a comprehensive theoretical study, we present a scheme to compress the longitudinal duration of low (⩽1 keV) to medium energy (1–70 keV) electron pulses by the electric field of a THz wave, together with a novel shot-by-shot jitter correction approach by using the magnetic field from the same wave. Our theoretical simulations suggest the compression of the electron pulse duration to a few femtoseconds and even sub-femtosecond. A comprehensive analysis based on typical UED patterns indicates a sub-femtosecond precision of the jitter correction approach. We stress that the energy independence of Coulomb interaction in the compression and the compact structure of THz device lay the foundation of the compression of low energy electron pulses. The combination of the THz compression of the electron pulse and the electron–THz jitter correction opens a way to improve the overall temporal resolution to attosecond for ultrafast electron probes with low to medium energies and high charge number per pulse, and therefore, it will boost the ultrafast detection of transient structural dynamics in surface science and atomically thin film systems.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac05e2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5950-8157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2021-06, Vol.23 (6), p.63052 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_proquest_journals_2543759254 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | attosecond temporal resolution Coulomb interaction Electric fields Electron diffraction Electron probes Electron pulses electron–THz timing jitter Energy Laboratories Longitudinal waves low energy electron diffraction Magnetic fields Microscopy Optical control Physics Pulse duration Temporal resolution Terahertz frequencies Thin films THz compression Timing jitter Vibration |
title | Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20studies%20of%20the%20THz%20compression%20of%20low-to-medium%20energy%20electron%20pulses%20and%20the%20single-shot%20stamping%20of%20electron%E2%80%93THz%20timing%20jitter&rft.jtitle=New%20journal%20of%20physics&rft.au=Qi,%20Yingpeng&rft.date=2021-06-01&rft.volume=23&rft.issue=6&rft.spage=63052&rft.pages=63052-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac05e2&rft_dat=%3Cproquest_iop_j%3E2543759254%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543759254&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4368de8154a347e6b2c7386af618e4d3&rfr_iscdi=true |