Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter

The recent development of optical control of electron pulses brings new opportunities and methodologies in the fields of light–electron interaction and ultrafast electron diffraction (UED)/microscopy. Here, by a comprehensive theoretical study, we present a scheme to compress the longitudinal durati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2021-06, Vol.23 (6), p.63052
Hauptverfasser: Qi, Yingpeng, Yang, Lele, Yue, Luye, Li, Jingjun, Wang, Xuan, Sun, Zhenrong, Cao, Jianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 63052
container_title New journal of physics
container_volume 23
creator Qi, Yingpeng
Yang, Lele
Yue, Luye
Li, Jingjun
Wang, Xuan
Sun, Zhenrong
Cao, Jianming
description The recent development of optical control of electron pulses brings new opportunities and methodologies in the fields of light–electron interaction and ultrafast electron diffraction (UED)/microscopy. Here, by a comprehensive theoretical study, we present a scheme to compress the longitudinal duration of low (⩽1 keV) to medium energy (1–70 keV) electron pulses by the electric field of a THz wave, together with a novel shot-by-shot jitter correction approach by using the magnetic field from the same wave. Our theoretical simulations suggest the compression of the electron pulse duration to a few femtoseconds and even sub-femtosecond. A comprehensive analysis based on typical UED patterns indicates a sub-femtosecond precision of the jitter correction approach. We stress that the energy independence of Coulomb interaction in the compression and the compact structure of THz device lay the foundation of the compression of low energy electron pulses. The combination of the THz compression of the electron pulse and the electron–THz jitter correction opens a way to improve the overall temporal resolution to attosecond for ultrafast electron probes with low to medium energies and high charge number per pulse, and therefore, it will boost the ultrafast detection of transient structural dynamics in surface science and atomically thin film systems.
doi_str_mv 10.1088/1367-2630/ac05e2
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2543759254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4368de8154a347e6b2c7386af618e4d3</doaj_id><sourcerecordid>2543759254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-720d6378cb5eec45a610b7064db7c2066ada7dc868649eacafad23c95f8c5a143</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEEmXovstILNiQ1v_2LFEFtFIlNtO15bFvZhwlcbAdobLiDVjwhjxJnQYKC9TVta_P-e6VT1WdYXSOkVIXmArZEEHRhbGIA3lWnTy2nv9zflm9SqlDCGNFyEn1Y3eEECF7a_o65dl5SHVo63yEenf1rbZhmCKk5MO4tPvwtcmhGcD5eahhhHi4q6EHm2MRTHOfit2M7sGf_HjooUnHkAvaDFO5L5A_-l_ffy4jsh-Wh87nDPF19aI1hXL6u26q248fdpdXzc3nT9eX728ay5jKjSTICSqV3XMAy7gRGO0lEsztpSVICOOMdFYJJdgWjDWtcYTaLW-V5QYzuqmuV64LptNT9IOJdzoYrx8aIR60ieVXetCMCuVAYc4MZRLEnlhJlTCtwAqYo4X1ZmVNMXyZIWXdhTmOZX1NOKOSb5eyqdCqsjGkFKF9nIqRXiLUS0Z6yUivERbLu9Xiw_SX-YT87X_kYzdpQrXQqEg50ZNr6T2Hja1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543759254</pqid></control><display><type>article</type><title>Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Qi, Yingpeng ; Yang, Lele ; Yue, Luye ; Li, Jingjun ; Wang, Xuan ; Sun, Zhenrong ; Cao, Jianming</creator><creatorcontrib>Qi, Yingpeng ; Yang, Lele ; Yue, Luye ; Li, Jingjun ; Wang, Xuan ; Sun, Zhenrong ; Cao, Jianming</creatorcontrib><description>The recent development of optical control of electron pulses brings new opportunities and methodologies in the fields of light–electron interaction and ultrafast electron diffraction (UED)/microscopy. Here, by a comprehensive theoretical study, we present a scheme to compress the longitudinal duration of low (⩽1 keV) to medium energy (1–70 keV) electron pulses by the electric field of a THz wave, together with a novel shot-by-shot jitter correction approach by using the magnetic field from the same wave. Our theoretical simulations suggest the compression of the electron pulse duration to a few femtoseconds and even sub-femtosecond. A comprehensive analysis based on typical UED patterns indicates a sub-femtosecond precision of the jitter correction approach. We stress that the energy independence of Coulomb interaction in the compression and the compact structure of THz device lay the foundation of the compression of low energy electron pulses. The combination of the THz compression of the electron pulse and the electron–THz jitter correction opens a way to improve the overall temporal resolution to attosecond for ultrafast electron probes with low to medium energies and high charge number per pulse, and therefore, it will boost the ultrafast detection of transient structural dynamics in surface science and atomically thin film systems.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ac05e2</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>attosecond temporal resolution ; Coulomb interaction ; Electric fields ; Electron diffraction ; Electron probes ; Electron pulses ; electron–THz timing jitter ; Energy ; Laboratories ; Longitudinal waves ; low energy electron diffraction ; Magnetic fields ; Microscopy ; Optical control ; Physics ; Pulse duration ; Temporal resolution ; Terahertz frequencies ; Thin films ; THz compression ; Timing jitter ; Vibration</subject><ispartof>New journal of physics, 2021-06, Vol.23 (6), p.63052</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-720d6378cb5eec45a610b7064db7c2066ada7dc868649eacafad23c95f8c5a143</citedby><cites>FETCH-LOGICAL-c448t-720d6378cb5eec45a610b7064db7c2066ada7dc868649eacafad23c95f8c5a143</cites><orcidid>0000-0001-5950-8157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ac05e2/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Qi, Yingpeng</creatorcontrib><creatorcontrib>Yang, Lele</creatorcontrib><creatorcontrib>Yue, Luye</creatorcontrib><creatorcontrib>Li, Jingjun</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Sun, Zhenrong</creatorcontrib><creatorcontrib>Cao, Jianming</creatorcontrib><title>Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>The recent development of optical control of electron pulses brings new opportunities and methodologies in the fields of light–electron interaction and ultrafast electron diffraction (UED)/microscopy. Here, by a comprehensive theoretical study, we present a scheme to compress the longitudinal duration of low (⩽1 keV) to medium energy (1–70 keV) electron pulses by the electric field of a THz wave, together with a novel shot-by-shot jitter correction approach by using the magnetic field from the same wave. Our theoretical simulations suggest the compression of the electron pulse duration to a few femtoseconds and even sub-femtosecond. A comprehensive analysis based on typical UED patterns indicates a sub-femtosecond precision of the jitter correction approach. We stress that the energy independence of Coulomb interaction in the compression and the compact structure of THz device lay the foundation of the compression of low energy electron pulses. The combination of the THz compression of the electron pulse and the electron–THz jitter correction opens a way to improve the overall temporal resolution to attosecond for ultrafast electron probes with low to medium energies and high charge number per pulse, and therefore, it will boost the ultrafast detection of transient structural dynamics in surface science and atomically thin film systems.</description><subject>attosecond temporal resolution</subject><subject>Coulomb interaction</subject><subject>Electric fields</subject><subject>Electron diffraction</subject><subject>Electron probes</subject><subject>Electron pulses</subject><subject>electron–THz timing jitter</subject><subject>Energy</subject><subject>Laboratories</subject><subject>Longitudinal waves</subject><subject>low energy electron diffraction</subject><subject>Magnetic fields</subject><subject>Microscopy</subject><subject>Optical control</subject><subject>Physics</subject><subject>Pulse duration</subject><subject>Temporal resolution</subject><subject>Terahertz frequencies</subject><subject>Thin films</subject><subject>THz compression</subject><subject>Timing jitter</subject><subject>Vibration</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAUhSMEEmXovstILNiQ1v_2LFEFtFIlNtO15bFvZhwlcbAdobLiDVjwhjxJnQYKC9TVta_P-e6VT1WdYXSOkVIXmArZEEHRhbGIA3lWnTy2nv9zflm9SqlDCGNFyEn1Y3eEECF7a_o65dl5SHVo63yEenf1rbZhmCKk5MO4tPvwtcmhGcD5eahhhHi4q6EHm2MRTHOfit2M7sGf_HjooUnHkAvaDFO5L5A_-l_ffy4jsh-Wh87nDPF19aI1hXL6u26q248fdpdXzc3nT9eX728ay5jKjSTICSqV3XMAy7gRGO0lEsztpSVICOOMdFYJJdgWjDWtcYTaLW-V5QYzuqmuV64LptNT9IOJdzoYrx8aIR60ieVXetCMCuVAYc4MZRLEnlhJlTCtwAqYo4X1ZmVNMXyZIWXdhTmOZX1NOKOSb5eyqdCqsjGkFKF9nIqRXiLUS0Z6yUivERbLu9Xiw_SX-YT87X_kYzdpQrXQqEg50ZNr6T2Hja1I</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Qi, Yingpeng</creator><creator>Yang, Lele</creator><creator>Yue, Luye</creator><creator>Li, Jingjun</creator><creator>Wang, Xuan</creator><creator>Sun, Zhenrong</creator><creator>Cao, Jianming</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5950-8157</orcidid></search><sort><creationdate>20210601</creationdate><title>Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter</title><author>Qi, Yingpeng ; Yang, Lele ; Yue, Luye ; Li, Jingjun ; Wang, Xuan ; Sun, Zhenrong ; Cao, Jianming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-720d6378cb5eec45a610b7064db7c2066ada7dc868649eacafad23c95f8c5a143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>attosecond temporal resolution</topic><topic>Coulomb interaction</topic><topic>Electric fields</topic><topic>Electron diffraction</topic><topic>Electron probes</topic><topic>Electron pulses</topic><topic>electron–THz timing jitter</topic><topic>Energy</topic><topic>Laboratories</topic><topic>Longitudinal waves</topic><topic>low energy electron diffraction</topic><topic>Magnetic fields</topic><topic>Microscopy</topic><topic>Optical control</topic><topic>Physics</topic><topic>Pulse duration</topic><topic>Temporal resolution</topic><topic>Terahertz frequencies</topic><topic>Thin films</topic><topic>THz compression</topic><topic>Timing jitter</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Yingpeng</creatorcontrib><creatorcontrib>Yang, Lele</creatorcontrib><creatorcontrib>Yue, Luye</creatorcontrib><creatorcontrib>Li, Jingjun</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Sun, Zhenrong</creatorcontrib><creatorcontrib>Cao, Jianming</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Yingpeng</au><au>Yang, Lele</au><au>Yue, Luye</au><au>Li, Jingjun</au><au>Wang, Xuan</au><au>Sun, Zhenrong</au><au>Cao, Jianming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>23</volume><issue>6</issue><spage>63052</spage><pages>63052-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>The recent development of optical control of electron pulses brings new opportunities and methodologies in the fields of light–electron interaction and ultrafast electron diffraction (UED)/microscopy. Here, by a comprehensive theoretical study, we present a scheme to compress the longitudinal duration of low (⩽1 keV) to medium energy (1–70 keV) electron pulses by the electric field of a THz wave, together with a novel shot-by-shot jitter correction approach by using the magnetic field from the same wave. Our theoretical simulations suggest the compression of the electron pulse duration to a few femtoseconds and even sub-femtosecond. A comprehensive analysis based on typical UED patterns indicates a sub-femtosecond precision of the jitter correction approach. We stress that the energy independence of Coulomb interaction in the compression and the compact structure of THz device lay the foundation of the compression of low energy electron pulses. The combination of the THz compression of the electron pulse and the electron–THz jitter correction opens a way to improve the overall temporal resolution to attosecond for ultrafast electron probes with low to medium energies and high charge number per pulse, and therefore, it will boost the ultrafast detection of transient structural dynamics in surface science and atomically thin film systems.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ac05e2</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5950-8157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2021-06, Vol.23 (6), p.63052
issn 1367-2630
1367-2630
language eng
recordid cdi_proquest_journals_2543759254
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects attosecond temporal resolution
Coulomb interaction
Electric fields
Electron diffraction
Electron probes
Electron pulses
electron–THz timing jitter
Energy
Laboratories
Longitudinal waves
low energy electron diffraction
Magnetic fields
Microscopy
Optical control
Physics
Pulse duration
Temporal resolution
Terahertz frequencies
Thin films
THz compression
Timing jitter
Vibration
title Theoretical studies of the THz compression of low-to-medium energy electron pulses and the single-shot stamping of electron–THz timing jitter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20studies%20of%20the%20THz%20compression%20of%20low-to-medium%20energy%20electron%20pulses%20and%20the%20single-shot%20stamping%20of%20electron%E2%80%93THz%20timing%20jitter&rft.jtitle=New%20journal%20of%20physics&rft.au=Qi,%20Yingpeng&rft.date=2021-06-01&rft.volume=23&rft.issue=6&rft.spage=63052&rft.pages=63052-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ac05e2&rft_dat=%3Cproquest_iop_j%3E2543759254%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543759254&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4368de8154a347e6b2c7386af618e4d3&rfr_iscdi=true