Flexibility and Rigidity in Steady Fluid Motion

Flexibility and rigidity properties of steady (time-independent) solutions of the Euler, Boussinesq and Magnetohydrostatic equations are investigated. Specifically, certain Liouville-type theorems are established which show that suitable steady solutions with no stagnation points occupying a two-dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021-07, Vol.385 (1), p.521-563
Hauptverfasser: Constantin, Peter, Drivas, Theodore D., Ginsberg, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 563
container_issue 1
container_start_page 521
container_title Communications in mathematical physics
container_volume 385
creator Constantin, Peter
Drivas, Theodore D.
Ginsberg, Daniel
description Flexibility and rigidity properties of steady (time-independent) solutions of the Euler, Boussinesq and Magnetohydrostatic equations are investigated. Specifically, certain Liouville-type theorems are established which show that suitable steady solutions with no stagnation points occupying a two-dimensional periodic channel, or axisymmetric solutions in (hollowed out) cylinder, must have certain structural symmetries. It is additionally shown that such solutions can be deformed to occupy domains which are themselves small perturbations of the base domain. As application of the general scheme, Arnol’d stable solutions are shown to be structurally stable.
doi_str_mv 10.1007/s00220-021-04048-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2543741489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543741489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-9acce7940ba3fc2af50f65d2d3967fc03adb371bac0fa9ba6a1fd8b82fc0b10a3</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhgdRsFZfwFXA9dgzl0wySynWChXBy3qYa5kSkzqTgH17UyO4c3U4nO__D3wIXRO4JQDVIgNQChgowcCB15ifoBnhjGKQRJyiGQABzAQR5-gi5x0ASCrEDC1Wjf-KJjaxPxS6dcVL3EZ3XGJbvPZeu0Oxaoboiqeuj117ic6CbrK_-p1z9L66f1uu8eb54XF5t8GW1WWPpbbWV5KD0SxYqkMJQZSOOiZFFSww7QyriNEWgpZGC02Cq01Nx5shoNkc3Uy9-9R9Dj73atcNqR1fKlpyVnHCazlSdKJs6nJOPqh9ih86HRQBdRSjJjFqFKN-xCg-htgUyiPcbn36q_4n9Q3n5GWH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543741489</pqid></control><display><type>article</type><title>Flexibility and Rigidity in Steady Fluid Motion</title><source>Springer Nature - Complete Springer Journals</source><creator>Constantin, Peter ; Drivas, Theodore D. ; Ginsberg, Daniel</creator><creatorcontrib>Constantin, Peter ; Drivas, Theodore D. ; Ginsberg, Daniel</creatorcontrib><description>Flexibility and rigidity properties of steady (time-independent) solutions of the Euler, Boussinesq and Magnetohydrostatic equations are investigated. Specifically, certain Liouville-type theorems are established which show that suitable steady solutions with no stagnation points occupying a two-dimensional periodic channel, or axisymmetric solutions in (hollowed out) cylinder, must have certain structural symmetries. It is additionally shown that such solutions can be deformed to occupy domains which are themselves small perturbations of the base domain. As application of the general scheme, Arnol’d stable solutions are shown to be structurally stable.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-021-04048-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boussinesq equations ; Classical and Quantum Gravitation ; Complex Systems ; Domains ; Flexibility ; Magnetic properties ; Mathematical and Computational Physics ; Mathematical Physics ; Perturbation ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Rigidity ; Theoretical</subject><ispartof>Communications in mathematical physics, 2021-07, Vol.385 (1), p.521-563</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-9acce7940ba3fc2af50f65d2d3967fc03adb371bac0fa9ba6a1fd8b82fc0b10a3</citedby><cites>FETCH-LOGICAL-c385t-9acce7940ba3fc2af50f65d2d3967fc03adb371bac0fa9ba6a1fd8b82fc0b10a3</cites><orcidid>0000-0003-2818-0376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-021-04048-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-021-04048-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Constantin, Peter</creatorcontrib><creatorcontrib>Drivas, Theodore D.</creatorcontrib><creatorcontrib>Ginsberg, Daniel</creatorcontrib><title>Flexibility and Rigidity in Steady Fluid Motion</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>Flexibility and rigidity properties of steady (time-independent) solutions of the Euler, Boussinesq and Magnetohydrostatic equations are investigated. Specifically, certain Liouville-type theorems are established which show that suitable steady solutions with no stagnation points occupying a two-dimensional periodic channel, or axisymmetric solutions in (hollowed out) cylinder, must have certain structural symmetries. It is additionally shown that such solutions can be deformed to occupy domains which are themselves small perturbations of the base domain. As application of the general scheme, Arnol’d stable solutions are shown to be structurally stable.</description><subject>Boussinesq equations</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Domains</subject><subject>Flexibility</subject><subject>Magnetic properties</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Rigidity</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKw0AUhgdRsFZfwFXA9dgzl0wySynWChXBy3qYa5kSkzqTgH17UyO4c3U4nO__D3wIXRO4JQDVIgNQChgowcCB15ifoBnhjGKQRJyiGQABzAQR5-gi5x0ASCrEDC1Wjf-KJjaxPxS6dcVL3EZ3XGJbvPZeu0Oxaoboiqeuj117ic6CbrK_-p1z9L66f1uu8eb54XF5t8GW1WWPpbbWV5KD0SxYqkMJQZSOOiZFFSww7QyriNEWgpZGC02Cq01Nx5shoNkc3Uy9-9R9Dj73atcNqR1fKlpyVnHCazlSdKJs6nJOPqh9ih86HRQBdRSjJjFqFKN-xCg-htgUyiPcbn36q_4n9Q3n5GWH</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Constantin, Peter</creator><creator>Drivas, Theodore D.</creator><creator>Ginsberg, Daniel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2818-0376</orcidid></search><sort><creationdate>20210701</creationdate><title>Flexibility and Rigidity in Steady Fluid Motion</title><author>Constantin, Peter ; Drivas, Theodore D. ; Ginsberg, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-9acce7940ba3fc2af50f65d2d3967fc03adb371bac0fa9ba6a1fd8b82fc0b10a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boussinesq equations</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Domains</topic><topic>Flexibility</topic><topic>Magnetic properties</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Rigidity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantin, Peter</creatorcontrib><creatorcontrib>Drivas, Theodore D.</creatorcontrib><creatorcontrib>Ginsberg, Daniel</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantin, Peter</au><au>Drivas, Theodore D.</au><au>Ginsberg, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexibility and Rigidity in Steady Fluid Motion</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>385</volume><issue>1</issue><spage>521</spage><epage>563</epage><pages>521-563</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>Flexibility and rigidity properties of steady (time-independent) solutions of the Euler, Boussinesq and Magnetohydrostatic equations are investigated. Specifically, certain Liouville-type theorems are established which show that suitable steady solutions with no stagnation points occupying a two-dimensional periodic channel, or axisymmetric solutions in (hollowed out) cylinder, must have certain structural symmetries. It is additionally shown that such solutions can be deformed to occupy domains which are themselves small perturbations of the base domain. As application of the general scheme, Arnol’d stable solutions are shown to be structurally stable.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-021-04048-4</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0003-2818-0376</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2021-07, Vol.385 (1), p.521-563
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_2543741489
source Springer Nature - Complete Springer Journals
subjects Boussinesq equations
Classical and Quantum Gravitation
Complex Systems
Domains
Flexibility
Magnetic properties
Mathematical and Computational Physics
Mathematical Physics
Perturbation
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Rigidity
Theoretical
title Flexibility and Rigidity in Steady Fluid Motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A54%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexibility%20and%20Rigidity%20in%20Steady%20Fluid%20Motion&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Constantin,%20Peter&rft.date=2021-07-01&rft.volume=385&rft.issue=1&rft.spage=521&rft.epage=563&rft.pages=521-563&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-021-04048-4&rft_dat=%3Cproquest_cross%3E2543741489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543741489&rft_id=info:pmid/&rfr_iscdi=true