Flexibility and Rigidity in Steady Fluid Motion

Flexibility and rigidity properties of steady (time-independent) solutions of the Euler, Boussinesq and Magnetohydrostatic equations are investigated. Specifically, certain Liouville-type theorems are established which show that suitable steady solutions with no stagnation points occupying a two-dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2021-07, Vol.385 (1), p.521-563
Hauptverfasser: Constantin, Peter, Drivas, Theodore D., Ginsberg, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flexibility and rigidity properties of steady (time-independent) solutions of the Euler, Boussinesq and Magnetohydrostatic equations are investigated. Specifically, certain Liouville-type theorems are established which show that suitable steady solutions with no stagnation points occupying a two-dimensional periodic channel, or axisymmetric solutions in (hollowed out) cylinder, must have certain structural symmetries. It is additionally shown that such solutions can be deformed to occupy domains which are themselves small perturbations of the base domain. As application of the general scheme, Arnol’d stable solutions are shown to be structurally stable.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-021-04048-4