Inverse magnetic catalysis: how much do we know about?

Some of the advances made in the literature to understand the phase transitions of quark matter in the presence of strong magnetic field and finite temperature (zero quark chemical potential) are reviewed. We start by discussing the physics behind the Magnetic catalysis (MC) at zero/finite temperatu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2021-06, Vol.230 (3), p.719-728
Hauptverfasser: Bandyopadhyay, Aritra, Farias, Ricardo L S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue 3
container_start_page 719
container_title The European physical journal. ST, Special topics
container_volume 230
creator Bandyopadhyay, Aritra
Farias, Ricardo L S
description Some of the advances made in the literature to understand the phase transitions of quark matter in the presence of strong magnetic field and finite temperature (zero quark chemical potential) are reviewed. We start by discussing the physics behind the Magnetic catalysis (MC) at zero/finite temperature and then focus on the lattice predictions for inverse magnetic catalysis (IMC) at high temperature and strong magnetic fields. Possible explanations for the IMC are covered, as well. Finally, we discuss recent efforts to modify QCD (quantum chromodynamics) effective models to reproduce the IMC observed on the lattice simulations. We emphasize the fact that applying thermomagnetic effects on the coupling constant of the NJL model significantly improve the effectiveness of the NJL model to obtain a reasonable physical description of hot and magnetized quark matter being in agreement with lattice results.
doi_str_mv 10.1140/epjs/s11734-021-00023-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2543741362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543741362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ed5bde27a654dfac2f94b470d2631a596ee1d792aae4a55536ff0348cab71c5f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKu_wYDntZl8dr2IFKuFghc9h2x20g_b3ZrsWvrv3bqKR08zA-_zDjyEXAO7BZBshLt1GiUAI2TGOGSMMS4yOCEDyBVkWjI4_d2FUufkIqU1Y0rzXAyInlWfGBPSrVtU2Kw89a5xm0NapTu6rPd02_olLWu6R_pedbcr6ra5vyRnwW0SXv3MIXmbPr5OnrP5y9Ns8jDPvBCyybBURYncOK1kGZznIZeFNKzkWoBTuUaE0uTcOZROKSV0CEzIsXeFAa-CGJKbvncX648WU2PXdRur7qXlSgojQWjepUyf8rFOKWKwu7jauniwwOxRkj1Ksr0k20my35IsdOS4J1NHVAuMf_3_oV_54m1O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543741362</pqid></control><display><type>article</type><title>Inverse magnetic catalysis: how much do we know about?</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bandyopadhyay, Aritra ; Farias, Ricardo L S</creator><creatorcontrib>Bandyopadhyay, Aritra ; Farias, Ricardo L S</creatorcontrib><description>Some of the advances made in the literature to understand the phase transitions of quark matter in the presence of strong magnetic field and finite temperature (zero quark chemical potential) are reviewed. We start by discussing the physics behind the Magnetic catalysis (MC) at zero/finite temperature and then focus on the lattice predictions for inverse magnetic catalysis (IMC) at high temperature and strong magnetic fields. Possible explanations for the IMC are covered, as well. Finally, we discuss recent efforts to modify QCD (quantum chromodynamics) effective models to reproduce the IMC observed on the lattice simulations. We emphasize the fact that applying thermomagnetic effects on the coupling constant of the NJL model significantly improve the effectiveness of the NJL model to obtain a reasonable physical description of hot and magnetized quark matter being in agreement with lattice results.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjs/s11734-021-00023-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Catalysis ; Chemical potential ; Classical and Continuum Physics ; Condensed Matter Physics ; High temperature ; Magnetic fields ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Optical and Plasma Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum chromodynamics ; Quark-Gluon Plasma and Heavy-Ion Phenomenology ; Quarks ; Review ; Thermomagnetic effects</subject><ispartof>The European physical journal. ST, Special topics, 2021-06, Vol.230 (3), p.719-728</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to EDP Sciences, Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ed5bde27a654dfac2f94b470d2631a596ee1d792aae4a55536ff0348cab71c5f3</citedby><cites>FETCH-LOGICAL-c334t-ed5bde27a654dfac2f94b470d2631a596ee1d792aae4a55536ff0348cab71c5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjs/s11734-021-00023-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjs/s11734-021-00023-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bandyopadhyay, Aritra</creatorcontrib><creatorcontrib>Farias, Ricardo L S</creatorcontrib><title>Inverse magnetic catalysis: how much do we know about?</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>Some of the advances made in the literature to understand the phase transitions of quark matter in the presence of strong magnetic field and finite temperature (zero quark chemical potential) are reviewed. We start by discussing the physics behind the Magnetic catalysis (MC) at zero/finite temperature and then focus on the lattice predictions for inverse magnetic catalysis (IMC) at high temperature and strong magnetic fields. Possible explanations for the IMC are covered, as well. Finally, we discuss recent efforts to modify QCD (quantum chromodynamics) effective models to reproduce the IMC observed on the lattice simulations. We emphasize the fact that applying thermomagnetic effects on the coupling constant of the NJL model significantly improve the effectiveness of the NJL model to obtain a reasonable physical description of hot and magnetized quark matter being in agreement with lattice results.</description><subject>Atomic</subject><subject>Catalysis</subject><subject>Chemical potential</subject><subject>Classical and Continuum Physics</subject><subject>Condensed Matter Physics</subject><subject>High temperature</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum chromodynamics</subject><subject>Quark-Gluon Plasma and Heavy-Ion Phenomenology</subject><subject>Quarks</subject><subject>Review</subject><subject>Thermomagnetic effects</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKu_wYDntZl8dr2IFKuFghc9h2x20g_b3ZrsWvrv3bqKR08zA-_zDjyEXAO7BZBshLt1GiUAI2TGOGSMMS4yOCEDyBVkWjI4_d2FUufkIqU1Y0rzXAyInlWfGBPSrVtU2Kw89a5xm0NapTu6rPd02_olLWu6R_pedbcr6ra5vyRnwW0SXv3MIXmbPr5OnrP5y9Ns8jDPvBCyybBURYncOK1kGZznIZeFNKzkWoBTuUaE0uTcOZROKSV0CEzIsXeFAa-CGJKbvncX648WU2PXdRur7qXlSgojQWjepUyf8rFOKWKwu7jauniwwOxRkj1Ksr0k20my35IsdOS4J1NHVAuMf_3_oV_54m1O</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Bandyopadhyay, Aritra</creator><creator>Farias, Ricardo L S</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210601</creationdate><title>Inverse magnetic catalysis: how much do we know about?</title><author>Bandyopadhyay, Aritra ; Farias, Ricardo L S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ed5bde27a654dfac2f94b470d2631a596ee1d792aae4a55536ff0348cab71c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic</topic><topic>Catalysis</topic><topic>Chemical potential</topic><topic>Classical and Continuum Physics</topic><topic>Condensed Matter Physics</topic><topic>High temperature</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum chromodynamics</topic><topic>Quark-Gluon Plasma and Heavy-Ion Phenomenology</topic><topic>Quarks</topic><topic>Review</topic><topic>Thermomagnetic effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bandyopadhyay, Aritra</creatorcontrib><creatorcontrib>Farias, Ricardo L S</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bandyopadhyay, Aritra</au><au>Farias, Ricardo L S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse magnetic catalysis: how much do we know about?</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>230</volume><issue>3</issue><spage>719</spage><epage>728</epage><pages>719-728</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>Some of the advances made in the literature to understand the phase transitions of quark matter in the presence of strong magnetic field and finite temperature (zero quark chemical potential) are reviewed. We start by discussing the physics behind the Magnetic catalysis (MC) at zero/finite temperature and then focus on the lattice predictions for inverse magnetic catalysis (IMC) at high temperature and strong magnetic fields. Possible explanations for the IMC are covered, as well. Finally, we discuss recent efforts to modify QCD (quantum chromodynamics) effective models to reproduce the IMC observed on the lattice simulations. We emphasize the fact that applying thermomagnetic effects on the coupling constant of the NJL model significantly improve the effectiveness of the NJL model to obtain a reasonable physical description of hot and magnetized quark matter being in agreement with lattice results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjs/s11734-021-00023-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2021-06, Vol.230 (3), p.719-728
issn 1951-6355
1951-6401
language eng
recordid cdi_proquest_journals_2543741362
source SpringerLink Journals - AutoHoldings
subjects Atomic
Catalysis
Chemical potential
Classical and Continuum Physics
Condensed Matter Physics
High temperature
Magnetic fields
Materials Science
Measurement Science and Instrumentation
Molecular
Optical and Plasma Physics
Phase transitions
Physics
Physics and Astronomy
Quantum chromodynamics
Quark-Gluon Plasma and Heavy-Ion Phenomenology
Quarks
Review
Thermomagnetic effects
title Inverse magnetic catalysis: how much do we know about?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20magnetic%20catalysis:%20how%20much%20do%20we%20know%20about?&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Bandyopadhyay,%20Aritra&rft.date=2021-06-01&rft.volume=230&rft.issue=3&rft.spage=719&rft.epage=728&rft.pages=719-728&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjs/s11734-021-00023-1&rft_dat=%3Cproquest_cross%3E2543741362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543741362&rft_id=info:pmid/&rfr_iscdi=true