CO2‐to‐HCOOH Electrochemical Conversion on Nanostructured CuxPd100−x/Carbon Catalysts
Selective electrochemical conversion of CO2 to HCOOH is obtained at the surface of a carbon‐supported bimetallic cathode material composed of copper and palladium nanoparticles. Polycrystalline copper or large copper particles are well‐known to catalyze CO2 reduction to hydrocarbons at relatively ne...
Gespeichert in:
Veröffentlicht in: | ChemElectroChem 2021-04, Vol.8 (7), p.1362-1368 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1368 |
---|---|
container_issue | 7 |
container_start_page | 1362 |
container_title | ChemElectroChem |
container_volume | 8 |
creator | Şahin, Nihat Ege Comminges, Clément Arrii, Sandrine Napporn, Teko W. Kokoh, Kouakou B. |
description | Selective electrochemical conversion of CO2 to HCOOH is obtained at the surface of a carbon‐supported bimetallic cathode material composed of copper and palladium nanoparticles. Polycrystalline copper or large copper particles are well‐known to catalyze CO2 reduction to hydrocarbons at relatively negative potentials, or when their surface is covered by copper oxides (Cu2O and CuO). Cu‐based materials modified by various palladium contents (0 |
doi_str_mv | 10.1002/celc.202100268 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2543730316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2543730316</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2738-8df9708b73eaf0a229cbad0eb268e436b511deb31c15a1a605691550bfff1ce43</originalsourceid><addsrcrecordid>eNpNkMFLwzAUxoMoOOaungueu70kS9oeJUwnDOtBTx5CmqbY0bUzSXW77ehR_BP3l5gxGcLjvffBj_fxPoSuMYwxAJlo0-gxAXIQPD1DA4IzHgfNz__tl2jk3BIAMAZGUz5AryIn-92370KbizyfR7PGaG87_WZWtVZNJLr2w1hXd20U6lG1nfO21763poxEv3kqg-f-62czEcoWARHKq2brvLtCF5VqnBn9zSF6uZs9i3m8yO8fxO0iXpOEpnFaVlkCaZFQoypQhGS6UCWYIjxippQXDOPSFBRrzBRWHBjPMGNQVFWFdSCG6OZ4d2279944L5ddb9tgKQmb0oQCxTxQ2ZH6rBuzlWtbr5TdSgzykJk8BChPAUoxW4iTor_gomjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543730316</pqid></control><display><type>article</type><title>CO2‐to‐HCOOH Electrochemical Conversion on Nanostructured CuxPd100−x/Carbon Catalysts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Şahin, Nihat Ege ; Comminges, Clément ; Arrii, Sandrine ; Napporn, Teko W. ; Kokoh, Kouakou B.</creator><creatorcontrib>Şahin, Nihat Ege ; Comminges, Clément ; Arrii, Sandrine ; Napporn, Teko W. ; Kokoh, Kouakou B.</creatorcontrib><description>Selective electrochemical conversion of CO2 to HCOOH is obtained at the surface of a carbon‐supported bimetallic cathode material composed of copper and palladium nanoparticles. Polycrystalline copper or large copper particles are well‐known to catalyze CO2 reduction to hydrocarbons at relatively negative potentials, or when their surface is covered by copper oxides (Cu2O and CuO). Cu‐based materials modified by various palladium contents (0<×<100), were synthesized by using the microwave‐assisted polyol method to serve as a cathode in the selective CO2‐into‐HCOOH transformation. Herein, we developed a targeted preparation route toward the metal content/catalytic activity relationship correlating atomic ratio with faradaic efficiency (FE) to formate formation (ca. 60 % FE) at −0.72 V vs. RHE, which represents a 703 mV overpotential at pH=7. Consequently, the occurrence of this reduction reaction slows down the parallel H2 production from the solvent consumption, while the neighboring Cu−Pd provides excellent activity and a good efficiency toward CO2 reduction via the hydridation of the CO2 molecule to orientate the reaction to formate rather than carbon monoxide or H2 evolution.
Pick and choose: Selective CO2‐to‐HCOOH conversion occurs at the surface carbon‐supported CuxPd100‐x nanoparticles. Higher faradaic efficiency (ca. 60 %) is obtained on Cu50Pd50/C at −0.72 V vs. RHE, where low parallel H2 and CO production occurs.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.202100268</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Bimetals ; Carbon ; Carbon dioxide ; carbon dioxide reduction ; Carbon monoxide ; Catalytic activity ; Cathodes ; Chemical reduction ; Conversion ; Copper ; Copper oxides ; Electrode materials ; formate ; formic acid ; Hydridation ; Hydrogen evolution ; Hydrogen production ; microwave synthesis ; Nanoparticles ; Palladium ; palladium-copper nanoparticles</subject><ispartof>ChemElectroChem, 2021-04, Vol.8 (7), p.1362-1368</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5379-7792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.202100268$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.202100268$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Şahin, Nihat Ege</creatorcontrib><creatorcontrib>Comminges, Clément</creatorcontrib><creatorcontrib>Arrii, Sandrine</creatorcontrib><creatorcontrib>Napporn, Teko W.</creatorcontrib><creatorcontrib>Kokoh, Kouakou B.</creatorcontrib><title>CO2‐to‐HCOOH Electrochemical Conversion on Nanostructured CuxPd100−x/Carbon Catalysts</title><title>ChemElectroChem</title><description>Selective electrochemical conversion of CO2 to HCOOH is obtained at the surface of a carbon‐supported bimetallic cathode material composed of copper and palladium nanoparticles. Polycrystalline copper or large copper particles are well‐known to catalyze CO2 reduction to hydrocarbons at relatively negative potentials, or when their surface is covered by copper oxides (Cu2O and CuO). Cu‐based materials modified by various palladium contents (0<×<100), were synthesized by using the microwave‐assisted polyol method to serve as a cathode in the selective CO2‐into‐HCOOH transformation. Herein, we developed a targeted preparation route toward the metal content/catalytic activity relationship correlating atomic ratio with faradaic efficiency (FE) to formate formation (ca. 60 % FE) at −0.72 V vs. RHE, which represents a 703 mV overpotential at pH=7. Consequently, the occurrence of this reduction reaction slows down the parallel H2 production from the solvent consumption, while the neighboring Cu−Pd provides excellent activity and a good efficiency toward CO2 reduction via the hydridation of the CO2 molecule to orientate the reaction to formate rather than carbon monoxide or H2 evolution.
Pick and choose: Selective CO2‐to‐HCOOH conversion occurs at the surface carbon‐supported CuxPd100‐x nanoparticles. Higher faradaic efficiency (ca. 60 %) is obtained on Cu50Pd50/C at −0.72 V vs. RHE, where low parallel H2 and CO production occurs.</description><subject>Bimetals</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>carbon dioxide reduction</subject><subject>Carbon monoxide</subject><subject>Catalytic activity</subject><subject>Cathodes</subject><subject>Chemical reduction</subject><subject>Conversion</subject><subject>Copper</subject><subject>Copper oxides</subject><subject>Electrode materials</subject><subject>formate</subject><subject>formic acid</subject><subject>Hydridation</subject><subject>Hydrogen evolution</subject><subject>Hydrogen production</subject><subject>microwave synthesis</subject><subject>Nanoparticles</subject><subject>Palladium</subject><subject>palladium-copper nanoparticles</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMFLwzAUxoMoOOaungueu70kS9oeJUwnDOtBTx5CmqbY0bUzSXW77ehR_BP3l5gxGcLjvffBj_fxPoSuMYwxAJlo0-gxAXIQPD1DA4IzHgfNz__tl2jk3BIAMAZGUz5AryIn-92370KbizyfR7PGaG87_WZWtVZNJLr2w1hXd20U6lG1nfO21763poxEv3kqg-f-62czEcoWARHKq2brvLtCF5VqnBn9zSF6uZs9i3m8yO8fxO0iXpOEpnFaVlkCaZFQoypQhGS6UCWYIjxippQXDOPSFBRrzBRWHBjPMGNQVFWFdSCG6OZ4d2279944L5ddb9tgKQmb0oQCxTxQ2ZH6rBuzlWtbr5TdSgzykJk8BChPAUoxW4iTor_gomjI</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Şahin, Nihat Ege</creator><creator>Comminges, Clément</creator><creator>Arrii, Sandrine</creator><creator>Napporn, Teko W.</creator><creator>Kokoh, Kouakou B.</creator><general>John Wiley & Sons, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5379-7792</orcidid></search><sort><creationdate>20210401</creationdate><title>CO2‐to‐HCOOH Electrochemical Conversion on Nanostructured CuxPd100−x/Carbon Catalysts</title><author>Şahin, Nihat Ege ; Comminges, Clément ; Arrii, Sandrine ; Napporn, Teko W. ; Kokoh, Kouakou B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2738-8df9708b73eaf0a229cbad0eb268e436b511deb31c15a1a605691550bfff1ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bimetals</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>carbon dioxide reduction</topic><topic>Carbon monoxide</topic><topic>Catalytic activity</topic><topic>Cathodes</topic><topic>Chemical reduction</topic><topic>Conversion</topic><topic>Copper</topic><topic>Copper oxides</topic><topic>Electrode materials</topic><topic>formate</topic><topic>formic acid</topic><topic>Hydridation</topic><topic>Hydrogen evolution</topic><topic>Hydrogen production</topic><topic>microwave synthesis</topic><topic>Nanoparticles</topic><topic>Palladium</topic><topic>palladium-copper nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Şahin, Nihat Ege</creatorcontrib><creatorcontrib>Comminges, Clément</creatorcontrib><creatorcontrib>Arrii, Sandrine</creatorcontrib><creatorcontrib>Napporn, Teko W.</creatorcontrib><creatorcontrib>Kokoh, Kouakou B.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Şahin, Nihat Ege</au><au>Comminges, Clément</au><au>Arrii, Sandrine</au><au>Napporn, Teko W.</au><au>Kokoh, Kouakou B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2‐to‐HCOOH Electrochemical Conversion on Nanostructured CuxPd100−x/Carbon Catalysts</atitle><jtitle>ChemElectroChem</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>8</volume><issue>7</issue><spage>1362</spage><epage>1368</epage><pages>1362-1368</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>Selective electrochemical conversion of CO2 to HCOOH is obtained at the surface of a carbon‐supported bimetallic cathode material composed of copper and palladium nanoparticles. Polycrystalline copper or large copper particles are well‐known to catalyze CO2 reduction to hydrocarbons at relatively negative potentials, or when their surface is covered by copper oxides (Cu2O and CuO). Cu‐based materials modified by various palladium contents (0<×<100), were synthesized by using the microwave‐assisted polyol method to serve as a cathode in the selective CO2‐into‐HCOOH transformation. Herein, we developed a targeted preparation route toward the metal content/catalytic activity relationship correlating atomic ratio with faradaic efficiency (FE) to formate formation (ca. 60 % FE) at −0.72 V vs. RHE, which represents a 703 mV overpotential at pH=7. Consequently, the occurrence of this reduction reaction slows down the parallel H2 production from the solvent consumption, while the neighboring Cu−Pd provides excellent activity and a good efficiency toward CO2 reduction via the hydridation of the CO2 molecule to orientate the reaction to formate rather than carbon monoxide or H2 evolution.
Pick and choose: Selective CO2‐to‐HCOOH conversion occurs at the surface carbon‐supported CuxPd100‐x nanoparticles. Higher faradaic efficiency (ca. 60 %) is obtained on Cu50Pd50/C at −0.72 V vs. RHE, where low parallel H2 and CO production occurs.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/celc.202100268</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5379-7792</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-0216 |
ispartof | ChemElectroChem, 2021-04, Vol.8 (7), p.1362-1368 |
issn | 2196-0216 2196-0216 |
language | eng |
recordid | cdi_proquest_journals_2543730316 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bimetals Carbon Carbon dioxide carbon dioxide reduction Carbon monoxide Catalytic activity Cathodes Chemical reduction Conversion Copper Copper oxides Electrode materials formate formic acid Hydridation Hydrogen evolution Hydrogen production microwave synthesis Nanoparticles Palladium palladium-copper nanoparticles |
title | CO2‐to‐HCOOH Electrochemical Conversion on Nanostructured CuxPd100−x/Carbon Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%E2%80%90to%E2%80%90HCOOH%20Electrochemical%20Conversion%20on%20Nanostructured%20CuxPd100%E2%88%92x/Carbon%20Catalysts&rft.jtitle=ChemElectroChem&rft.au=%C5%9Eahin,%20Nihat%20Ege&rft.date=2021-04-01&rft.volume=8&rft.issue=7&rft.spage=1362&rft.epage=1368&rft.pages=1362-1368&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.202100268&rft_dat=%3Cproquest_wiley%3E2543730316%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543730316&rft_id=info:pmid/&rfr_iscdi=true |