Large families of elliptic curves ordered by conductor

In this paper we study the family of elliptic curves $E/{{\mathbb {Q}}}$, having good reduction at $2$ and $3$, and whose $j$-invariants are small. Within this set of elliptic curves, we consider the following two subfamilies: first, the set of elliptic curves $E$ such that the quotient $\Delta (E)/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2021-07, Vol.157 (7), p.1538-1583
Hauptverfasser: Shankar, Ananth N., Shankar, Arul, Wang, Xiaoheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1583
container_issue 7
container_start_page 1538
container_title Compositio mathematica
container_volume 157
creator Shankar, Ananth N.
Shankar, Arul
Wang, Xiaoheng
description In this paper we study the family of elliptic curves $E/{{\mathbb {Q}}}$, having good reduction at $2$ and $3$, and whose $j$-invariants are small. Within this set of elliptic curves, we consider the following two subfamilies: first, the set of elliptic curves $E$ such that the quotient $\Delta (E)/C(E)$ of the discriminant divided by the conductor is squarefree; and second, the set of elliptic curves $E$ such that the Szpiro quotient $\beta _E:=\log |\Delta (E)|/\log (C(E))$ is less than $7/4$. Both these families are conjectured to contain a positive proportion of elliptic curves, when ordered by conductor. Our main results determine asymptotics for both these families, when ordered by conductor. Moreover, we prove that the average size of the $2$-Selmer groups of elliptic curves in the first family, again when these curves are ordered by their conductors, is $3$. The key new ingredients necessary for the proofs are ‘uniformity estimates’, namely upper bounds on the number of elliptic curves with bounded height, whose discriminants are divisible by high powers of primes.
doi_str_mv 10.1112/S0010437X21007193
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2543631639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X21007193</cupid><sourcerecordid>2543631639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-14f8833adb0415433ba4e9257479362d934c105e52db85de28966f2f190d5ab43</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRMFZ_gLuA6-i988rMUoovCLhQwV2YzKOkpE2dSYT-exNacCGuLpxzvnPhEHKNcIuI9O4NAIGz8pMiQImanZAMRQmFUFyekmy2i9k_JxcprQGAKqoyIisTVz4PZtN2rU95H3Lfde1uaG1ux_g9S9H56F3e7HPbb91ohz5ekrNguuSvjndBPh4f3pfPRfX69LK8rwrLsBwK5EEpxoxrgKPgjDWGe01FyUvNJHWacYsgvKCuUcJ5qrSUgQbU4IRpOFuQm0PvLvZfo09Dve7HuJ1e1nTqkwwl01MKDykb-5SiD_UuthsT9zVCPc9T_5lnYtiRMZsmtm7lf6v_p34Ac9pk-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543631639</pqid></control><display><type>article</type><title>Large families of elliptic curves ordered by conductor</title><source>Cambridge Journals</source><creator>Shankar, Ananth N. ; Shankar, Arul ; Wang, Xiaoheng</creator><creatorcontrib>Shankar, Ananth N. ; Shankar, Arul ; Wang, Xiaoheng</creatorcontrib><description>In this paper we study the family of elliptic curves $E/{{\mathbb {Q}}}$, having good reduction at $2$ and $3$, and whose $j$-invariants are small. Within this set of elliptic curves, we consider the following two subfamilies: first, the set of elliptic curves $E$ such that the quotient $\Delta (E)/C(E)$ of the discriminant divided by the conductor is squarefree; and second, the set of elliptic curves $E$ such that the Szpiro quotient $\beta _E:=\log |\Delta (E)|/\log (C(E))$ is less than $7/4$. Both these families are conjectured to contain a positive proportion of elliptic curves, when ordered by conductor. Our main results determine asymptotics for both these families, when ordered by conductor. Moreover, we prove that the average size of the $2$-Selmer groups of elliptic curves in the first family, again when these curves are ordered by their conductors, is $3$. The key new ingredients necessary for the proofs are ‘uniformity estimates’, namely upper bounds on the number of elliptic curves with bounded height, whose discriminants are divisible by high powers of primes.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X21007193</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Algebra ; Conductors ; Curves ; Heuristic ; Quotients ; Upper bounds</subject><ispartof>Compositio mathematica, 2021-07, Vol.157 (7), p.1538-1583</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-14f8833adb0415433ba4e9257479362d934c105e52db85de28966f2f190d5ab43</citedby><cites>FETCH-LOGICAL-c317t-14f8833adb0415433ba4e9257479362d934c105e52db85de28966f2f190d5ab43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X21007193/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Shankar, Ananth N.</creatorcontrib><creatorcontrib>Shankar, Arul</creatorcontrib><creatorcontrib>Wang, Xiaoheng</creatorcontrib><title>Large families of elliptic curves ordered by conductor</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>In this paper we study the family of elliptic curves $E/{{\mathbb {Q}}}$, having good reduction at $2$ and $3$, and whose $j$-invariants are small. Within this set of elliptic curves, we consider the following two subfamilies: first, the set of elliptic curves $E$ such that the quotient $\Delta (E)/C(E)$ of the discriminant divided by the conductor is squarefree; and second, the set of elliptic curves $E$ such that the Szpiro quotient $\beta _E:=\log |\Delta (E)|/\log (C(E))$ is less than $7/4$. Both these families are conjectured to contain a positive proportion of elliptic curves, when ordered by conductor. Our main results determine asymptotics for both these families, when ordered by conductor. Moreover, we prove that the average size of the $2$-Selmer groups of elliptic curves in the first family, again when these curves are ordered by their conductors, is $3$. The key new ingredients necessary for the proofs are ‘uniformity estimates’, namely upper bounds on the number of elliptic curves with bounded height, whose discriminants are divisible by high powers of primes.</description><subject>Algebra</subject><subject>Conductors</subject><subject>Curves</subject><subject>Heuristic</subject><subject>Quotients</subject><subject>Upper bounds</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLw0AUhQdRMFZ_gLuA6-i988rMUoovCLhQwV2YzKOkpE2dSYT-exNacCGuLpxzvnPhEHKNcIuI9O4NAIGz8pMiQImanZAMRQmFUFyekmy2i9k_JxcprQGAKqoyIisTVz4PZtN2rU95H3Lfde1uaG1ux_g9S9H56F3e7HPbb91ohz5ekrNguuSvjndBPh4f3pfPRfX69LK8rwrLsBwK5EEpxoxrgKPgjDWGe01FyUvNJHWacYsgvKCuUcJ5qrSUgQbU4IRpOFuQm0PvLvZfo09Dve7HuJ1e1nTqkwwl01MKDykb-5SiD_UuthsT9zVCPc9T_5lnYtiRMZsmtm7lf6v_p34Ac9pk-Q</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Shankar, Ananth N.</creator><creator>Shankar, Arul</creator><creator>Wang, Xiaoheng</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20210701</creationdate><title>Large families of elliptic curves ordered by conductor</title><author>Shankar, Ananth N. ; Shankar, Arul ; Wang, Xiaoheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-14f8833adb0415433ba4e9257479362d934c105e52db85de28966f2f190d5ab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Conductors</topic><topic>Curves</topic><topic>Heuristic</topic><topic>Quotients</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shankar, Ananth N.</creatorcontrib><creatorcontrib>Shankar, Arul</creatorcontrib><creatorcontrib>Wang, Xiaoheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shankar, Ananth N.</au><au>Shankar, Arul</au><au>Wang, Xiaoheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large families of elliptic curves ordered by conductor</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>157</volume><issue>7</issue><spage>1538</spage><epage>1583</epage><pages>1538-1583</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>In this paper we study the family of elliptic curves $E/{{\mathbb {Q}}}$, having good reduction at $2$ and $3$, and whose $j$-invariants are small. Within this set of elliptic curves, we consider the following two subfamilies: first, the set of elliptic curves $E$ such that the quotient $\Delta (E)/C(E)$ of the discriminant divided by the conductor is squarefree; and second, the set of elliptic curves $E$ such that the Szpiro quotient $\beta _E:=\log |\Delta (E)|/\log (C(E))$ is less than $7/4$. Both these families are conjectured to contain a positive proportion of elliptic curves, when ordered by conductor. Our main results determine asymptotics for both these families, when ordered by conductor. Moreover, we prove that the average size of the $2$-Selmer groups of elliptic curves in the first family, again when these curves are ordered by their conductors, is $3$. The key new ingredients necessary for the proofs are ‘uniformity estimates’, namely upper bounds on the number of elliptic curves with bounded height, whose discriminants are divisible by high powers of primes.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X21007193</doi><tpages>46</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2021-07, Vol.157 (7), p.1538-1583
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_journals_2543631639
source Cambridge Journals
subjects Algebra
Conductors
Curves
Heuristic
Quotients
Upper bounds
title Large families of elliptic curves ordered by conductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A03%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20families%20of%20elliptic%20curves%20ordered%20by%20conductor&rft.jtitle=Compositio%20mathematica&rft.au=Shankar,%20Ananth%20N.&rft.date=2021-07-01&rft.volume=157&rft.issue=7&rft.spage=1538&rft.epage=1583&rft.pages=1538-1583&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X21007193&rft_dat=%3Cproquest_cross%3E2543631639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543631639&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X21007193&rfr_iscdi=true