Thermal Properties of Biological Tissue Gel-Phantoms in a Wide Low-Temperature Range
It is often impossible or impractical to conduct experiments on cooling, freezing, and thawing during medical cryoexposures with using biological tissues. In such cases, gel-phantoms are used. Due to the lack of accurate data, the definition of the thermal properties of gel-phantoms is relevant. The...
Gespeichert in:
Veröffentlicht in: | Journal of engineering physics and thermophysics 2021-05, Vol.94 (3), p.790-803 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 803 |
---|---|
container_issue | 3 |
container_start_page | 790 |
container_title | Journal of engineering physics and thermophysics |
container_volume | 94 |
creator | Agafonkina, I. V. Belozerov, A. G. Berezovsky, Yu. M. Korolev, I. A. Pushkarev, A. V. Tsiganov, D. I. Shakurov, A. V. Zherdev, A. A. |
description | It is often impossible or impractical to conduct experiments on cooling, freezing, and thawing during medical cryoexposures with using biological tissues. In such cases, gel-phantoms are used. Due to the lack of accurate data, the definition of the thermal properties of gel-phantoms is relevant. The current study presents the results of the thermal properties measurements with using the differential scanning calorimetry (DSC) and transient hot bridge (THB) methods and of their analysis for five gel-phantoms: 1) 95% water and 5% gelatin; 2) 95% water and 5% agar-agar; 3) 94% water, 3% gelatin, 2.5% agar-agar, and 0.5% sodium chloride; 4 and 5) ultrasound gels. The values of the effective specific heat capacity from –160 to 40°C, thermal conductivity, moisture content, freezable water fraction, and of the initial melting and cryoscopic temperatures are determined. The obtained results are compared with the values of the thermal properties of biotissue and distilled water. The influence of the gelphantom type on the character of phase transition is shown. Adaptation of the experimental data for cryoexposure simulation software is proposed. Recommendations for selecting a phantom are given. The impact of simplification of the thermal properties on the thermal diffusivity is estimated. The data for calculating the properties of phantoms of different composition are proposed. |
doi_str_mv | 10.1007/s10891-021-02356-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2543086192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A804160482</galeid><sourcerecordid>A804160482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-e9d47724bdbcf16c762bbb89b48e067d6fa192ae34605f062f0b1304464c35db3</originalsourceid><addsrcrecordid>eNp9kU1L5TAUhovMgI7jH3AVcOUievLRtF2qjB9wQXE6jLuQtifXSNvcSVpm9NebawVxM4SQkDzPycebZYcMThhAcRoZlBWjwLdd5Iq-7GR7LC8ELQv28CXNQXEKjOe72bcYnwCgKqXYy-r6EcNgenIX_AbD5DASb8m5871fuzZt1C7GGckV9vTu0YyTHyJxIzHkt-uQrPxfWuOQVDPNAcm9Gdf4PftqTR_x4H3cz35d_qgvrunq9urm4mxFW1HxiWLVyaLgsuma1jLVFoo3TVNWjSwRVNEpa1jFDQqpILfpARYaJkBKJVuRd43Yz46Wupvg_8wYJ_3k5zCmIzXPpYBSJT9RJwu1Nj1qN1o_BdOm1uHgWj-idWn9rATJFMhyKxx_EhIz4b9pbeYY9c3P-88sX9g2-BgDWr0JbjDhWTPQ22j0Eo1O0ei3aPRLksQixQSn_wof9_6P9QrTrY_7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543086192</pqid></control><display><type>article</type><title>Thermal Properties of Biological Tissue Gel-Phantoms in a Wide Low-Temperature Range</title><source>SpringerLink Journals - AutoHoldings</source><creator>Agafonkina, I. V. ; Belozerov, A. G. ; Berezovsky, Yu. M. ; Korolev, I. A. ; Pushkarev, A. V. ; Tsiganov, D. I. ; Shakurov, A. V. ; Zherdev, A. A.</creator><creatorcontrib>Agafonkina, I. V. ; Belozerov, A. G. ; Berezovsky, Yu. M. ; Korolev, I. A. ; Pushkarev, A. V. ; Tsiganov, D. I. ; Shakurov, A. V. ; Zherdev, A. A.</creatorcontrib><description>It is often impossible or impractical to conduct experiments on cooling, freezing, and thawing during medical cryoexposures with using biological tissues. In such cases, gel-phantoms are used. Due to the lack of accurate data, the definition of the thermal properties of gel-phantoms is relevant. The current study presents the results of the thermal properties measurements with using the differential scanning calorimetry (DSC) and transient hot bridge (THB) methods and of their analysis for five gel-phantoms: 1) 95% water and 5% gelatin; 2) 95% water and 5% agar-agar; 3) 94% water, 3% gelatin, 2.5% agar-agar, and 0.5% sodium chloride; 4 and 5) ultrasound gels. The values of the effective specific heat capacity from –160 to 40°C, thermal conductivity, moisture content, freezable water fraction, and of the initial melting and cryoscopic temperatures are determined. The obtained results are compared with the values of the thermal properties of biotissue and distilled water. The influence of the gelphantom type on the character of phase transition is shown. Adaptation of the experimental data for cryoexposure simulation software is proposed. Recommendations for selecting a phantom are given. The impact of simplification of the thermal properties on the thermal diffusivity is estimated. The data for calculating the properties of phantoms of different composition are proposed.</description><identifier>ISSN: 1062-0125</identifier><identifier>EISSN: 1573-871X</identifier><identifier>DOI: 10.1007/s10891-021-02356-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agar ; Analysis ; Biological properties ; Calorimetry ; Classical Mechanics ; Complex Systems ; Cryoscopy ; Differential scanning calorimetry ; Distilled water ; Electric properties ; Engineering ; Engineering Thermodynamics ; Freezing ; Gelatin ; Gels ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Low temperature ; Moisture content ; Phase transitions ; Sodium chloride ; Thermal conductivity ; Thermal diffusivity ; Thermal properties ; Thermodynamic properties ; Thermodynamics ; Thermophysical Properties ; Tissues</subject><ispartof>Journal of engineering physics and thermophysics, 2021-05, Vol.94 (3), p.790-803</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-e9d47724bdbcf16c762bbb89b48e067d6fa192ae34605f062f0b1304464c35db3</citedby><cites>FETCH-LOGICAL-c392t-e9d47724bdbcf16c762bbb89b48e067d6fa192ae34605f062f0b1304464c35db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10891-021-02356-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10891-021-02356-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Agafonkina, I. V.</creatorcontrib><creatorcontrib>Belozerov, A. G.</creatorcontrib><creatorcontrib>Berezovsky, Yu. M.</creatorcontrib><creatorcontrib>Korolev, I. A.</creatorcontrib><creatorcontrib>Pushkarev, A. V.</creatorcontrib><creatorcontrib>Tsiganov, D. I.</creatorcontrib><creatorcontrib>Shakurov, A. V.</creatorcontrib><creatorcontrib>Zherdev, A. A.</creatorcontrib><title>Thermal Properties of Biological Tissue Gel-Phantoms in a Wide Low-Temperature Range</title><title>Journal of engineering physics and thermophysics</title><addtitle>J Eng Phys Thermophy</addtitle><description>It is often impossible or impractical to conduct experiments on cooling, freezing, and thawing during medical cryoexposures with using biological tissues. In such cases, gel-phantoms are used. Due to the lack of accurate data, the definition of the thermal properties of gel-phantoms is relevant. The current study presents the results of the thermal properties measurements with using the differential scanning calorimetry (DSC) and transient hot bridge (THB) methods and of their analysis for five gel-phantoms: 1) 95% water and 5% gelatin; 2) 95% water and 5% agar-agar; 3) 94% water, 3% gelatin, 2.5% agar-agar, and 0.5% sodium chloride; 4 and 5) ultrasound gels. The values of the effective specific heat capacity from –160 to 40°C, thermal conductivity, moisture content, freezable water fraction, and of the initial melting and cryoscopic temperatures are determined. The obtained results are compared with the values of the thermal properties of biotissue and distilled water. The influence of the gelphantom type on the character of phase transition is shown. Adaptation of the experimental data for cryoexposure simulation software is proposed. Recommendations for selecting a phantom are given. The impact of simplification of the thermal properties on the thermal diffusivity is estimated. The data for calculating the properties of phantoms of different composition are proposed.</description><subject>Agar</subject><subject>Analysis</subject><subject>Biological properties</subject><subject>Calorimetry</subject><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Cryoscopy</subject><subject>Differential scanning calorimetry</subject><subject>Distilled water</subject><subject>Electric properties</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Freezing</subject><subject>Gelatin</subject><subject>Gels</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Low temperature</subject><subject>Moisture content</subject><subject>Phase transitions</subject><subject>Sodium chloride</subject><subject>Thermal conductivity</subject><subject>Thermal diffusivity</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Thermophysical Properties</subject><subject>Tissues</subject><issn>1062-0125</issn><issn>1573-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1L5TAUhovMgI7jH3AVcOUievLRtF2qjB9wQXE6jLuQtifXSNvcSVpm9NebawVxM4SQkDzPycebZYcMThhAcRoZlBWjwLdd5Iq-7GR7LC8ELQv28CXNQXEKjOe72bcYnwCgKqXYy-r6EcNgenIX_AbD5DASb8m5871fuzZt1C7GGckV9vTu0YyTHyJxIzHkt-uQrPxfWuOQVDPNAcm9Gdf4PftqTR_x4H3cz35d_qgvrunq9urm4mxFW1HxiWLVyaLgsuma1jLVFoo3TVNWjSwRVNEpa1jFDQqpILfpARYaJkBKJVuRd43Yz46Wupvg_8wYJ_3k5zCmIzXPpYBSJT9RJwu1Nj1qN1o_BdOm1uHgWj-idWn9rATJFMhyKxx_EhIz4b9pbeYY9c3P-88sX9g2-BgDWr0JbjDhWTPQ22j0Eo1O0ei3aPRLksQixQSn_wof9_6P9QrTrY_7</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Agafonkina, I. V.</creator><creator>Belozerov, A. G.</creator><creator>Berezovsky, Yu. M.</creator><creator>Korolev, I. A.</creator><creator>Pushkarev, A. V.</creator><creator>Tsiganov, D. I.</creator><creator>Shakurov, A. V.</creator><creator>Zherdev, A. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210501</creationdate><title>Thermal Properties of Biological Tissue Gel-Phantoms in a Wide Low-Temperature Range</title><author>Agafonkina, I. V. ; Belozerov, A. G. ; Berezovsky, Yu. M. ; Korolev, I. A. ; Pushkarev, A. V. ; Tsiganov, D. I. ; Shakurov, A. V. ; Zherdev, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-e9d47724bdbcf16c762bbb89b48e067d6fa192ae34605f062f0b1304464c35db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agar</topic><topic>Analysis</topic><topic>Biological properties</topic><topic>Calorimetry</topic><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Cryoscopy</topic><topic>Differential scanning calorimetry</topic><topic>Distilled water</topic><topic>Electric properties</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Freezing</topic><topic>Gelatin</topic><topic>Gels</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Low temperature</topic><topic>Moisture content</topic><topic>Phase transitions</topic><topic>Sodium chloride</topic><topic>Thermal conductivity</topic><topic>Thermal diffusivity</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Thermophysical Properties</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agafonkina, I. V.</creatorcontrib><creatorcontrib>Belozerov, A. G.</creatorcontrib><creatorcontrib>Berezovsky, Yu. M.</creatorcontrib><creatorcontrib>Korolev, I. A.</creatorcontrib><creatorcontrib>Pushkarev, A. V.</creatorcontrib><creatorcontrib>Tsiganov, D. I.</creatorcontrib><creatorcontrib>Shakurov, A. V.</creatorcontrib><creatorcontrib>Zherdev, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of engineering physics and thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agafonkina, I. V.</au><au>Belozerov, A. G.</au><au>Berezovsky, Yu. M.</au><au>Korolev, I. A.</au><au>Pushkarev, A. V.</au><au>Tsiganov, D. I.</au><au>Shakurov, A. V.</au><au>Zherdev, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Properties of Biological Tissue Gel-Phantoms in a Wide Low-Temperature Range</atitle><jtitle>Journal of engineering physics and thermophysics</jtitle><stitle>J Eng Phys Thermophy</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>94</volume><issue>3</issue><spage>790</spage><epage>803</epage><pages>790-803</pages><issn>1062-0125</issn><eissn>1573-871X</eissn><abstract>It is often impossible or impractical to conduct experiments on cooling, freezing, and thawing during medical cryoexposures with using biological tissues. In such cases, gel-phantoms are used. Due to the lack of accurate data, the definition of the thermal properties of gel-phantoms is relevant. The current study presents the results of the thermal properties measurements with using the differential scanning calorimetry (DSC) and transient hot bridge (THB) methods and of their analysis for five gel-phantoms: 1) 95% water and 5% gelatin; 2) 95% water and 5% agar-agar; 3) 94% water, 3% gelatin, 2.5% agar-agar, and 0.5% sodium chloride; 4 and 5) ultrasound gels. The values of the effective specific heat capacity from –160 to 40°C, thermal conductivity, moisture content, freezable water fraction, and of the initial melting and cryoscopic temperatures are determined. The obtained results are compared with the values of the thermal properties of biotissue and distilled water. The influence of the gelphantom type on the character of phase transition is shown. Adaptation of the experimental data for cryoexposure simulation software is proposed. Recommendations for selecting a phantom are given. The impact of simplification of the thermal properties on the thermal diffusivity is estimated. The data for calculating the properties of phantoms of different composition are proposed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10891-021-02356-z</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-0125 |
ispartof | Journal of engineering physics and thermophysics, 2021-05, Vol.94 (3), p.790-803 |
issn | 1062-0125 1573-871X |
language | eng |
recordid | cdi_proquest_journals_2543086192 |
source | SpringerLink Journals - AutoHoldings |
subjects | Agar Analysis Biological properties Calorimetry Classical Mechanics Complex Systems Cryoscopy Differential scanning calorimetry Distilled water Electric properties Engineering Engineering Thermodynamics Freezing Gelatin Gels Heat and Mass Transfer Industrial Chemistry/Chemical Engineering Low temperature Moisture content Phase transitions Sodium chloride Thermal conductivity Thermal diffusivity Thermal properties Thermodynamic properties Thermodynamics Thermophysical Properties Tissues |
title | Thermal Properties of Biological Tissue Gel-Phantoms in a Wide Low-Temperature Range |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Properties%20of%20Biological%20Tissue%20Gel-Phantoms%20in%20a%20Wide%20Low-Temperature%20Range&rft.jtitle=Journal%20of%20engineering%20physics%20and%20thermophysics&rft.au=Agafonkina,%20I.%20V.&rft.date=2021-05-01&rft.volume=94&rft.issue=3&rft.spage=790&rft.epage=803&rft.pages=790-803&rft.issn=1062-0125&rft.eissn=1573-871X&rft_id=info:doi/10.1007/s10891-021-02356-z&rft_dat=%3Cgale_proqu%3EA804160482%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543086192&rft_id=info:pmid/&rft_galeid=A804160482&rfr_iscdi=true |